Selective Actuation Enabled Multifunctional Magneto-mechanical Metamaterial for Programming Elastic Wave Propagation

Jay Sim, Shuai Wu, Sarah Hwang, Lu Lu, Ruike Renee Zhao
{"title":"Selective Actuation Enabled Multifunctional Magneto-mechanical Metamaterial for Programming Elastic Wave Propagation","authors":"Jay Sim, Shuai Wu, Sarah Hwang, Lu Lu, Ruike Renee Zhao","doi":"arxiv-2409.07635","DOIUrl":null,"url":null,"abstract":"Active metamaterials are a type of metamaterial with tunable properties\nenabled by structural reconfigurations. Existing active metamaterials often\nachieve only a limited number of structural reconfigurations upon the\napplication of an external load across the entire structure. Here, we propose a\nselective actuation strategy for inhomogeneous deformations of\nmagneto-mechanical metamaterials, which allows for the integration of multiple\nfunctionalities into a single metamaterial design. Central to this actuation\nstrategy is that a magnetic field is applied to specific unit cells instead of\nthe entire metamaterial, and the unit cell can transform between two\ngeometrically distinct shapes, which exhibit very different mechanical\nresponses to elastic wave excitations. Our numerical simulations and\nexperiments demonstrate that the tunable response of the unit cell, coupled\nwith inhomogeneous deformation achieved through selective actuation, unlocks\nmultifunctional capabilities of magneto-mechanical metamaterials such as\ntunable elastic wave transmittance, elastic waveguide, and vibration isolation.\nThe proposed selective actuation strategy offers a simple but effective way to\ncontrol the tunable properties and thus enhance the programmability of\nmagneto-mechanical metamaterials, which also expands the application space of\nmagneto-mechanical metamaterials in elastic wave manipulation.","PeriodicalId":501083,"journal":{"name":"arXiv - PHYS - Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07635","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Active metamaterials are a type of metamaterial with tunable properties enabled by structural reconfigurations. Existing active metamaterials often achieve only a limited number of structural reconfigurations upon the application of an external load across the entire structure. Here, we propose a selective actuation strategy for inhomogeneous deformations of magneto-mechanical metamaterials, which allows for the integration of multiple functionalities into a single metamaterial design. Central to this actuation strategy is that a magnetic field is applied to specific unit cells instead of the entire metamaterial, and the unit cell can transform between two geometrically distinct shapes, which exhibit very different mechanical responses to elastic wave excitations. Our numerical simulations and experiments demonstrate that the tunable response of the unit cell, coupled with inhomogeneous deformation achieved through selective actuation, unlocks multifunctional capabilities of magneto-mechanical metamaterials such as tunable elastic wave transmittance, elastic waveguide, and vibration isolation. The proposed selective actuation strategy offers a simple but effective way to control the tunable properties and thus enhance the programmability of magneto-mechanical metamaterials, which also expands the application space of magneto-mechanical metamaterials in elastic wave manipulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于编程弹性波传播的选择性致动多功能磁机械超材料
有源超材料是一种通过结构重组实现可调特性的超材料。现有的有源超材料在对整个结构施加外部负载时,通常只能实现有限数量的结构重构。在这里,我们提出了一种磁机械超材料非均质变形的选择性致动策略,它允许在单一超材料设计中集成多种功能。这种致动策略的核心是将磁场施加到特定的单元格而不是整个超材料上,单元格可以在两种几何形状之间转换,从而对弹性波激励表现出截然不同的机械响应。我们的数值模拟和实验证明,单元格的可调响应加上通过选择性致动实现的非均质变形,释放了磁机械超材料的多功能性,例如可调弹性波透射率、弹性波导和振动隔离。所提出的选择性致动策略提供了一种简单而有效的方法来控制可调特性,从而增强了磁机械超材料的可编程性,这也拓展了磁机械超材料在弹性波操纵方面的应用空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrafast cascade charge transfer in multi bandgap colloidal quantum dot solids enables threshold reduction for optical gain and stimulated emission p-(001)NiO/n-(0001)ZnO Heterostructures based Ultraviolet Photodetectors Normal/inverse Doppler effect of backward volume magnetostatic spin waves Unattended field measurement of bird source level Fabrication of Ultra-Thick Masks for X-ray Phase Contrast Imaging at Higher Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1