B. T. Delma, M. Antilin Princela, Y. Subbareddy, M. Anitha Malbi, S. Lizy Roselet, M. Shirly Treasa, M. C. Rao
{"title":"Spectroscopic Studies on Plant Extract Mediated ZnO Nanoparticles as a Potential Cytotoxic Agent","authors":"B. T. Delma, M. Antilin Princela, Y. Subbareddy, M. Anitha Malbi, S. Lizy Roselet, M. Shirly Treasa, M. C. Rao","doi":"10.1007/s10812-024-01799-5","DOIUrl":null,"url":null,"abstract":"<p>Plants play an important role in nanoparticle preparation because they are easily accessible, environmentally friendly, and inexpensive. In this study, we used an ethanolic extract of <i>Mangifera indica</i> seed as a reducing and stabilising agent to create zinc oxide (ZnO) nanoparticles (NPs). The ZnO NPs were examined using characterization techniques such as UV-Vis, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The interaction of phytochemical constituents from plant extracts providing the biological reduction of zinc metal ions to ZnO had been identified by the UV-visible absorption studies. According to the FT-IR results, metal oxides exhibited interatomic vibration-driven absorption in the fingerprint area below 1000 cm<sup>–1</sup>. Particles appeared to be crystalline and also a rice-grain shape of ZnO NPs was confirmed by XRD, SEM, and TEM, respectively. In addition, the cytotoxic effect of ZnO NPs was checked using the SKMEL-28 cell line, showing an IC50 value of 32.686 μg/mL in the SKMEL-28 cell line, and 49.011 μg/mL in the typical L6 cell line. Furthermore, the synthesized NPs were subjected to (AO/EB) double staining approach to examine the apoptotic activity. The acridine orange/ethidium bromide method made strong evidence for demonstrating chromatin condensation and membrane blebbing.</p>","PeriodicalId":609,"journal":{"name":"Journal of Applied Spectroscopy","volume":"91 4","pages":"912 - 920"},"PeriodicalIF":0.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10812-024-01799-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants play an important role in nanoparticle preparation because they are easily accessible, environmentally friendly, and inexpensive. In this study, we used an ethanolic extract of Mangifera indica seed as a reducing and stabilising agent to create zinc oxide (ZnO) nanoparticles (NPs). The ZnO NPs were examined using characterization techniques such as UV-Vis, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The interaction of phytochemical constituents from plant extracts providing the biological reduction of zinc metal ions to ZnO had been identified by the UV-visible absorption studies. According to the FT-IR results, metal oxides exhibited interatomic vibration-driven absorption in the fingerprint area below 1000 cm–1. Particles appeared to be crystalline and also a rice-grain shape of ZnO NPs was confirmed by XRD, SEM, and TEM, respectively. In addition, the cytotoxic effect of ZnO NPs was checked using the SKMEL-28 cell line, showing an IC50 value of 32.686 μg/mL in the SKMEL-28 cell line, and 49.011 μg/mL in the typical L6 cell line. Furthermore, the synthesized NPs were subjected to (AO/EB) double staining approach to examine the apoptotic activity. The acridine orange/ethidium bromide method made strong evidence for demonstrating chromatin condensation and membrane blebbing.
期刊介绍:
Journal of Applied Spectroscopy reports on many key applications of spectroscopy in chemistry, physics, metallurgy, and biology. An increasing number of papers focus on the theory of lasers, as well as the tremendous potential for the practical applications of lasers in numerous fields and industries.