{"title":"Investigating the Ordering Structure of Clustered Items Using Nonparametric Item Response Theory","authors":"Letty Koopman, Johan Braeken","doi":"10.1177/00131644241274122","DOIUrl":null,"url":null,"abstract":"Educational and psychological tests with an ordered item structure enable efficient test administration procedures and allow for intuitive score interpretation and monitoring. The effectiveness of the measurement instrument relies to a large extent on the validated strength of its ordering structure. We define three increasingly strict types of ordering for the ordering structure of a measurement instrument with clustered items: a weak and a strong invariant cluster ordering and a clustered invariant item ordering. Following a nonparametric item response theory (IRT) approach, we proposed a procedure to evaluate the ordering structure of a clustered item set along this three-fold continuum of order invariance. The basis of the procedure is (a) the local assessment of pairwise conditional expectations at both cluster and item level and (b) the global assessment of the number of Guttman errors through new generalizations of the H-coefficient for this item-cluster context. The procedure, readily implemented in R, is illustrated and applied to an empirical example. Suggestions for test practice, further methodological developments, and future research are discussed.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644241274122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Educational and psychological tests with an ordered item structure enable efficient test administration procedures and allow for intuitive score interpretation and monitoring. The effectiveness of the measurement instrument relies to a large extent on the validated strength of its ordering structure. We define three increasingly strict types of ordering for the ordering structure of a measurement instrument with clustered items: a weak and a strong invariant cluster ordering and a clustered invariant item ordering. Following a nonparametric item response theory (IRT) approach, we proposed a procedure to evaluate the ordering structure of a clustered item set along this three-fold continuum of order invariance. The basis of the procedure is (a) the local assessment of pairwise conditional expectations at both cluster and item level and (b) the global assessment of the number of Guttman errors through new generalizations of the H-coefficient for this item-cluster context. The procedure, readily implemented in R, is illustrated and applied to an empirical example. Suggestions for test practice, further methodological developments, and future research are discussed.
采用有序项目结构的教育和心理测验可以提高测验实施程序的效率,并能对分数进行直观的解释和监控。测量工具的有效性在很大程度上取决于其排序结构的有效强度。我们为具有聚类项目的测量工具的排序结构定义了三种越来越严格的排序类型:弱不变聚类排序和强不变聚类排序,以及聚类不变项目排序。按照非参数项目反应理论(IRT)的方法,我们提出了一种程序,用于根据顺序不变性的三重连续统一体评估聚类项目集的排序结构。该程序的基础是:(a) 在聚类和项目水平上对成对条件期望进行局部评估;(b) 通过对 H 系数进行新的概括,在此项目-聚类背景下对 Guttman 误差的数量进行全局评估。该程序可在 R 中轻松实现,并在一个实证例子中加以说明和应用。此外,还讨论了对测试实践、进一步的方法论发展和未来研究的建议。