Thermal radiation effect in electroosmosis regulated peristalsis transport of Williamson hybrid nanofluid via an asymmetric tapered channel

Santosh Chaudhary, Kiran Kunwar Chouhan
{"title":"Thermal radiation effect in electroosmosis regulated peristalsis transport of Williamson hybrid nanofluid via an asymmetric tapered channel","authors":"Santosh Chaudhary, Kiran Kunwar Chouhan","doi":"10.1002/zamm.202301081","DOIUrl":null,"url":null,"abstract":"Electroosmosis effects in a peristaltic transport of nanofluids are significant for developing the biomimetic pumping structure at a microscopic extent in physiological medications, for instance, ocular drug delivery systems. The present article addresses the numerical assessment of a peristaltically driven electro‐osmotic flow of a Williamson hybrid nanofluid. The flow is intended to be two‐dimensional, incompressible, unsteady, and subjected to an asymmetric tapered micro‐channel. The characteristics of hybrid nanofluid, which consists of silver (Ag) and copper (Cu) as nanoparticles with base fluid‐blood, are explored in a relative manner with regular nanofluid Ag‐blood. Further, the study includes the impact of linear thermal radiation, energy dissipation through viscosity and resistance phenomena with an externally applied consistent magnetic field. The mathematical model is simplified using dimensionless similarity transformations and numerically solved via MATLAB software. Variations in momentum, thermal energy, and entropy generation against various emerging physical parameters are deliberated through graphical results. Longitudinal velocity towards the center line and heat transfer rate is also analyzed through numerical data illustrated in table form. This study introduces a novel mathematical model for the peristaltically driven electroosmosis flow of Ag‐Cu/blood hybrid nanofluid in a tapered asymmetric microchannel, incorporating external electric and magnetic field effects.","PeriodicalId":501230,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics","volume":"80 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202301081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electroosmosis effects in a peristaltic transport of nanofluids are significant for developing the biomimetic pumping structure at a microscopic extent in physiological medications, for instance, ocular drug delivery systems. The present article addresses the numerical assessment of a peristaltically driven electro‐osmotic flow of a Williamson hybrid nanofluid. The flow is intended to be two‐dimensional, incompressible, unsteady, and subjected to an asymmetric tapered micro‐channel. The characteristics of hybrid nanofluid, which consists of silver (Ag) and copper (Cu) as nanoparticles with base fluid‐blood, are explored in a relative manner with regular nanofluid Ag‐blood. Further, the study includes the impact of linear thermal radiation, energy dissipation through viscosity and resistance phenomena with an externally applied consistent magnetic field. The mathematical model is simplified using dimensionless similarity transformations and numerically solved via MATLAB software. Variations in momentum, thermal energy, and entropy generation against various emerging physical parameters are deliberated through graphical results. Longitudinal velocity towards the center line and heat transfer rate is also analyzed through numerical data illustrated in table form. This study introduces a novel mathematical model for the peristaltically driven electroosmosis flow of Ag‐Cu/blood hybrid nanofluid in a tapered asymmetric microchannel, incorporating external electric and magnetic field effects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
威廉姆森混合纳米流体通过非对称锥形通道的电渗调节蠕动传输中的热辐射效应
纳米流体蠕动传输过程中的电渗效应对于在生理药物(例如眼部给药系统)的微观范围内开发仿生泵结构具有重要意义。本文针对威廉姆森混合纳米流体的蠕动驱动电渗流进行了数值评估。该流动是二维的、不可压缩的、不稳定的,并受制于一个不对称的锥形微通道。混合纳米流体由银(Ag)和铜(Cu)纳米粒子组成,基础流体为血液,研究探讨了混合纳米流体与常规纳米流体 "Ag-血液 "的相对特性。此外,研究还包括线性热辐射的影响、通过粘度进行的能量耗散以及外部施加的一致磁场的阻力现象。数学模型使用无量纲相似变换进行简化,并通过 MATLAB 软件进行数值求解。动量、热能和熵的产生与各种新出现的物理参数之间的变化通过图形结果进行了讨论。此外,还通过表格形式的数值数据对中心线纵向速度和传热率进行了分析。本研究针对锥形非对称微通道中银铜/血液混合纳米流体的蠕动驱动电渗流,结合外部电场和磁场效应,介绍了一种新型数学模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Flow around a slender body with sharp edges Heat transfer analysis of a peristaltically induced creeping magnetohydrodynamic flow through an inclined annulus using homotopy perturbation method Mathematical modeling of convective heat transfer enhancement using circular cylinders in an inverted T‐shaped porous enclosure Numerical simulation of melting heat transport mechanism of Cross nanofluid with multiple features of infinite shear rate over a Falkner‐Skan wedge surface Wave scattering in a cracked exponentially graded magnetoelectroelastic half‐plane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1