Hyojun Kim, Baptiste Alric, Nolan Chan, Julien Roul, Morgan Delarue
{"title":"Intracellular dry mass density increases under growth-induced pressure","authors":"Hyojun Kim, Baptiste Alric, Nolan Chan, Julien Roul, Morgan Delarue","doi":"10.1101/2024.09.10.612234","DOIUrl":null,"url":null,"abstract":"Cells that proliferate in confined environments develop mechanical compressive stress, referred to as growth-induced pressure, which inhibits growth and division across various organisms. Recent studies have shown that in these confined spaces, the diffusivity of intracellular nanoparticles decreases. However, the physical mechanisms behind this reduction remain unclear. In this study, we use quantitative phase imaging to measure the refractive index and dry mass density of Saccharomyces cerevisiae cells proliferating under confinement in a microfluidic bioreactor. Our results indicate that the observed decrease in diffusivity can be at least attributed to the intracellular accumulation of macromolecules. Furthermore, the linear scaling between cell content and growth-induced pressure suggests that the concentrations of macromolecules and osmolytes are maintained proportionally under such pressure in S. cerevisiae.","PeriodicalId":501048,"journal":{"name":"bioRxiv - Biophysics","volume":"108 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Cells that proliferate in confined environments develop mechanical compressive stress, referred to as growth-induced pressure, which inhibits growth and division across various organisms. Recent studies have shown that in these confined spaces, the diffusivity of intracellular nanoparticles decreases. However, the physical mechanisms behind this reduction remain unclear. In this study, we use quantitative phase imaging to measure the refractive index and dry mass density of Saccharomyces cerevisiae cells proliferating under confinement in a microfluidic bioreactor. Our results indicate that the observed decrease in diffusivity can be at least attributed to the intracellular accumulation of macromolecules. Furthermore, the linear scaling between cell content and growth-induced pressure suggests that the concentrations of macromolecules and osmolytes are maintained proportionally under such pressure in S. cerevisiae.