Universal non-thermal power-law distribution functions from the self-consistent evolution of collisionless electrostatic plasmas

Uddipan Banik, Amitava Bhattacharjee, Wrick Sengupta
{"title":"Universal non-thermal power-law distribution functions from the self-consistent evolution of collisionless electrostatic plasmas","authors":"Uddipan Banik, Amitava Bhattacharjee, Wrick Sengupta","doi":"arxiv-2408.07127","DOIUrl":null,"url":null,"abstract":"Distribution functions of collisionless systems are known to show non-thermal\npower law tails. Interestingly, collisionless plasmas in various physical\nscenarios, (e.g., the ion population of the solar wind) feature a $v^{-5}$ tail\nin the velocity ($v$) distribution, whose origin has been a long-standing\nmystery. We show this power law tail to be a natural outcome of the\nself-consistent collisionless relaxation of driven electrostatic plasmas. We\nperform a quasilinear analysis of the perturbed Vlasov-Poisson equations to\nshow that the coarse-grained mean distribution function (DF), $f_0$, follows a\nquasilinear diffusion equation with a diffusion coefficient $D(v)$ that depends\non $v$ through the plasma dielectric constant. If the plasma is isotropically\nforced on scales much larger than the Debye length with a white noise-like\nelectric field, then $D(v)\\sim v^4$ for $\\sigma<v<\\omega_{\\mathrm{P}}/k$, with\n$\\sigma$ the thermal velocity, $\\omega_{\\mathrm{P}}$ the plasma frequency and\n$k$ the maximum wavenumber of the perturbation; the corresponding $f_0$, in the\nquasi-steady state, develops a $v^{-\\left(d+2\\right)}$ tail in $d$ dimensions\n($v^{-5}$ tail in 3D), while the energy ($E$) distribution develops an $E^{-2}$\ntail irrespective of the dimensionality of space. Any redness of the noise only\nalters the scaling in the high $v$ end. Non-resonant particles moving slower\nthan the phase-velocity of the plasma waves ($\\omega_{\\mathrm{P}}/k$)\nexperience a Debye-screened electric field, and significantly less (power law\nsuppressed) acceleration than the near-resonant particles. Thus, a Maxwellian\nDF develops a power law tail. The Maxwellian core ($v<\\sigma$) eventually also\nheats up, but over a much longer timescale than that over which the tail forms.\nWe definitively show that self-consistency (ignored in test-particle\ntreatments) is crucial for the development of the universal $v^{-5}$ tail.","PeriodicalId":501423,"journal":{"name":"arXiv - PHYS - Space Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Space Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Distribution functions of collisionless systems are known to show non-thermal power law tails. Interestingly, collisionless plasmas in various physical scenarios, (e.g., the ion population of the solar wind) feature a $v^{-5}$ tail in the velocity ($v$) distribution, whose origin has been a long-standing mystery. We show this power law tail to be a natural outcome of the self-consistent collisionless relaxation of driven electrostatic plasmas. We perform a quasilinear analysis of the perturbed Vlasov-Poisson equations to show that the coarse-grained mean distribution function (DF), $f_0$, follows a quasilinear diffusion equation with a diffusion coefficient $D(v)$ that depends on $v$ through the plasma dielectric constant. If the plasma is isotropically forced on scales much larger than the Debye length with a white noise-like electric field, then $D(v)\sim v^4$ for $\sigma
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自无碰撞静电等离子体自洽演化的通用非热幂律分布函数
众所周知,无碰撞系统的分布函数会出现非热力定律尾部。有趣的是,各种物理情景下的无碰撞等离子体(例如太阳风中的离子群)的速度($v$)分布中都有一个$v^{-5}$尾部,其起源一直是个未解之谜。我们证明了这种幂律尾是驱动静电等离子体自洽无碰撞弛豫的自然结果。我们对扰动 Vlasov-Poisson 方程进行了类线性分析,结果表明粗粒度平均分布函数(DF)$f_0$ 遵循类线性扩散方程,扩散系数$D(v)$ 通过等离子体介电常数与$v$ 相关。如果等离子体在比德拜长度大得多的尺度上受到白噪声电场的等向强迫,那么在$\sigma
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1