{"title":"Crosslinked polytetrahydrofuran-based solid-state electrolytes with improved mechanical stability and electrochemical performance","authors":"Elmira Nurgaziyeva, Almagul Mentbayeva, Zhumabay Bakenov, Sandugash Kalybekkyzy","doi":"10.1016/j.apmt.2024.102417","DOIUrl":null,"url":null,"abstract":"Solid-state lithium-ion batteries using polymer electrolytes are viewed as a promising approach for the next generation of high-energy-density and safe solid-state batteries. Still, solid polymer electrolytes (SPEs) face real-world application challenges due to poor room temperature performance, inadequate stability, interface contact issues, and low mechanical strength. Herein, we present a novel crosslinked polytetrahydrofuran-based solid-state electrolyte (aPTHF*) with the varying ratios of lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), fabricated via UV-photocrosslinking process. To enhance mechanical and chemical stability, aPTHF-based SPE formulations (aPEP) were also produced by incorporating poly(ethylene glycol) diacrylate (PEGDA) and trimethylolpropane ethoxylate triacrylate (ETPTA) oligomers into the structure. The designed unique structure facilitated ion migration, and the highest value of ionic conductivity was 3.16 × 10 S·cm at 80 °C for aPEP4 formulation. Fabricated SPEs demonstrated high mechanical strength with a tensile strength of 13 MPa and a broad electrochemical stability window of around 5 V which allowed good interfacial stability with the LFP electrode, showing cycling stability at C/10 in an all-solid-state battery. Moreover, Li|aPEP4|LFP pouch cells were assembled, and the flexible cell and remained functional even after being bent and folded over 20 times. The flexible electrolyte demonstrated in this research offers a promising system for future studies on all-solid-state batteries.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"8 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102417","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state lithium-ion batteries using polymer electrolytes are viewed as a promising approach for the next generation of high-energy-density and safe solid-state batteries. Still, solid polymer electrolytes (SPEs) face real-world application challenges due to poor room temperature performance, inadequate stability, interface contact issues, and low mechanical strength. Herein, we present a novel crosslinked polytetrahydrofuran-based solid-state electrolyte (aPTHF*) with the varying ratios of lithium bis(trifluoromethanesulfonyl)imide salt (LiTFSI), fabricated via UV-photocrosslinking process. To enhance mechanical and chemical stability, aPTHF-based SPE formulations (aPEP) were also produced by incorporating poly(ethylene glycol) diacrylate (PEGDA) and trimethylolpropane ethoxylate triacrylate (ETPTA) oligomers into the structure. The designed unique structure facilitated ion migration, and the highest value of ionic conductivity was 3.16 × 10 S·cm at 80 °C for aPEP4 formulation. Fabricated SPEs demonstrated high mechanical strength with a tensile strength of 13 MPa and a broad electrochemical stability window of around 5 V which allowed good interfacial stability with the LFP electrode, showing cycling stability at C/10 in an all-solid-state battery. Moreover, Li|aPEP4|LFP pouch cells were assembled, and the flexible cell and remained functional even after being bent and folded over 20 times. The flexible electrolyte demonstrated in this research offers a promising system for future studies on all-solid-state batteries.
期刊介绍:
Journal Name: Applied Materials Today
Focus:
Multi-disciplinary, rapid-publication journal
Focused on cutting-edge applications of novel materials
Overview:
New materials discoveries have led to exciting fundamental breakthroughs.
Materials research is now moving towards the translation of these scientific properties and principles.