Cisplatin and ionic redox pairs co-delivery gelatin/hyaluronic acid hydrogels with amplified chemotherapy/chemodynamic tumor therapy

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Applied Materials Today Pub Date : 2024-08-12 DOI:10.1016/j.apmt.2024.102388
Shuhan Chen, Ru Xu, Panpan Huo, Junyu Liu, Dongdong Zhang, Jiajun Qiu, Xuanyong Liu
{"title":"Cisplatin and ionic redox pairs co-delivery gelatin/hyaluronic acid hydrogels with amplified chemotherapy/chemodynamic tumor therapy","authors":"Shuhan Chen, Ru Xu, Panpan Huo, Junyu Liu, Dongdong Zhang, Jiajun Qiu, Xuanyong Liu","doi":"10.1016/j.apmt.2024.102388","DOIUrl":null,"url":null,"abstract":"The tumor therapeutic efficacy of cisplatin as a chemotherapy drug and nanomaterial as a chemodynamic inducer are inhibited by the high levels of glutathione (GSH) and hypoxia within the tumor microenvironment. Herein, an injectable nanocomposite hydrogel platform is designed via encapsulating calcined MgMnFe-layered double hydroxide (LDH250) nanosheets and cisplatin into gelatin/hyaluronic acid double-crosslinked hydrogel. As an inducer of Fenton/Fenton-like reactions, LDH250 nanosheets exhibit multiple redox cycling pairs (Mn/Mn/Mn, Fe/Fe) capable of generating abundant reactive oxygen species (ROS), which synergizes with cisplatin to kill tumor cells effectively. Apart from this, the converse reaction of Mn into Mn allows LDH250 to consume GSH and produce O, thereby avoiding the deactivation of ROS and cisplatin, as well as alleviating hypoxia. These characteristics of LDH250 boost the anti-tumor effect of cisplatin and can be enhanced by modulating the calcination temperature. Furthermore, the hydrogels can reduce the transportation distance of ROS in chemodynamic therapy (CDT) and regulate the release of cisplatin. Based on these tactics, the nanocomposite hydrogel platform exhibits effective antitumor efficacy and . This work provides a platform for enhancing the therapeutic efficiency of chemotherapy/CDT by simultaneously depleting GSH and alleviating hypoxia.","PeriodicalId":8066,"journal":{"name":"Applied Materials Today","volume":"59 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Materials Today","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apmt.2024.102388","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The tumor therapeutic efficacy of cisplatin as a chemotherapy drug and nanomaterial as a chemodynamic inducer are inhibited by the high levels of glutathione (GSH) and hypoxia within the tumor microenvironment. Herein, an injectable nanocomposite hydrogel platform is designed via encapsulating calcined MgMnFe-layered double hydroxide (LDH250) nanosheets and cisplatin into gelatin/hyaluronic acid double-crosslinked hydrogel. As an inducer of Fenton/Fenton-like reactions, LDH250 nanosheets exhibit multiple redox cycling pairs (Mn/Mn/Mn, Fe/Fe) capable of generating abundant reactive oxygen species (ROS), which synergizes with cisplatin to kill tumor cells effectively. Apart from this, the converse reaction of Mn into Mn allows LDH250 to consume GSH and produce O, thereby avoiding the deactivation of ROS and cisplatin, as well as alleviating hypoxia. These characteristics of LDH250 boost the anti-tumor effect of cisplatin and can be enhanced by modulating the calcination temperature. Furthermore, the hydrogels can reduce the transportation distance of ROS in chemodynamic therapy (CDT) and regulate the release of cisplatin. Based on these tactics, the nanocomposite hydrogel platform exhibits effective antitumor efficacy and . This work provides a platform for enhancing the therapeutic efficiency of chemotherapy/CDT by simultaneously depleting GSH and alleviating hypoxia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
顺铂和离子氧化还原对联合给药明胶/透明质酸水凝胶的放大化疗/肿瘤化学动力疗法
顺铂作为化疗药物,纳米材料作为化学动力学诱导剂,其肿瘤疗效会受到肿瘤微环境中高水平谷胱甘肽(GSH)和缺氧的抑制。本文设计了一种可注射的纳米复合水凝胶平台,将煅烧镁锰铁层双氢氧化物(LDH250)纳米片和顺铂封装在明胶/透明质酸双交联水凝胶中。作为 Fenton/Fenton 类反应的诱导剂,LDH250 纳米片表现出多种氧化还原循环对(锰/锰/锰,铁/铁),能够产生大量活性氧(ROS),与顺铂协同作用,有效杀死肿瘤细胞。此外,锰转化为锰的逆反应使 LDH250 消耗 GSH 并产生 O,从而避免了 ROS 和顺铂的失活,并缓解了缺氧状况。LDH250 的这些特性增强了顺铂的抗肿瘤效果,而且可以通过调节煅烧温度来增强效果。此外,水凝胶还能缩短化学动力学疗法(CDT)中 ROS 的运输距离,并调节顺铂的释放。基于这些策略,纳米复合水凝胶平台表现出了有效的抗肿瘤疗效和......。这项研究为同时消耗 GSH 和缓解缺氧提供了一个提高化疗/CDT 治疗效率的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Materials Today
Applied Materials Today Materials Science-General Materials Science
CiteScore
14.90
自引率
3.60%
发文量
393
审稿时长
26 days
期刊介绍: Journal Name: Applied Materials Today Focus: Multi-disciplinary, rapid-publication journal Focused on cutting-edge applications of novel materials Overview: New materials discoveries have led to exciting fundamental breakthroughs. Materials research is now moving towards the translation of these scientific properties and principles.
期刊最新文献
Electrospinning and melt electrowriting of a tunable triblock-copolymer composed of poly(ε-caprolactone) and poly(L-lactic acid) for biomedical applications Click metamaterials: Fast acquisition of thermal conductivity and functionality diversities Colorimetric polymer nanofilm-based time-temperature indicators for recording irreversible changes of temperatures in cold chain Spinodally reinforced W-Cr fusion armour Dual cytokine release from microsphere-containing decellularized extracellular matrix immune regulation promotes bone repair and regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1