Near-Real Time Thermospheric Density Retrieval from Precise Low Earth Orbit Spacecraft Ephemerides During Geomagnetic Storms

Charles Constant, Santosh Bhattarai, Indigo Brownhall, Anasuya Aruliah, Marek Ziebart
{"title":"Near-Real Time Thermospheric Density Retrieval from Precise Low Earth Orbit Spacecraft Ephemerides During Geomagnetic Storms","authors":"Charles Constant, Santosh Bhattarai, Indigo Brownhall, Anasuya Aruliah, Marek Ziebart","doi":"arxiv-2408.16805","DOIUrl":null,"url":null,"abstract":"We present a methodology to generate low-latency, high spatio-temporal\nresolution thermospheric density estimates using publicly available Low Earth\nOrbit (LEO) spacecraft ephemerides. This provides a means of generating density\nestimates that can be used in a data-assimilative context by the satellite\noperations and thermosphere communities. It also contributes to the data base\nof high-resolution density estimates during geomagnetic storms -- which remains\none of the major gaps for the development and benchmarking of density models.\nUsing accelerometer-derived densities from the Gravity Recovery And Climate\nExperiment Follow-On (GRACE-FO) spacecraft as truth, our method surpasses\nEnergy Dissipation Rate-Type density retrieval techniques and three widely used\noperational density models in terms of accuracy: EDR (103.37%), JB2008\n(85.43%), DTM2000 (52.73%), and NRLMSISE-00 (12.31%). We demonstrate the\nrobustness of our methodology during a critical time for spacecraft operators\n-- attempting to operate in the presence of geomagnetic storms, by\nreconstructing density profiles along the orbits of three LEO satellites during\n80 geomagnetic storms. These profiles exhibit high spatial and temporal\nresolution compared to three operational thermospheric models, highlighting the\noperational applicability and potential for their use in model validation. Our\nfindings suggest that the increasing availability of precise orbit\ndetermination data offers a valuable, yet underutilized, resource that could\nprovide a significant improvement to data assimilative thermospheric models,\nultimately enhancing both spacecraft operations and thermospheric modeling\nefforts.","PeriodicalId":501423,"journal":{"name":"arXiv - PHYS - Space Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Space Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a methodology to generate low-latency, high spatio-temporal resolution thermospheric density estimates using publicly available Low Earth Orbit (LEO) spacecraft ephemerides. This provides a means of generating density estimates that can be used in a data-assimilative context by the satellite operations and thermosphere communities. It also contributes to the data base of high-resolution density estimates during geomagnetic storms -- which remains one of the major gaps for the development and benchmarking of density models. Using accelerometer-derived densities from the Gravity Recovery And Climate Experiment Follow-On (GRACE-FO) spacecraft as truth, our method surpasses Energy Dissipation Rate-Type density retrieval techniques and three widely used operational density models in terms of accuracy: EDR (103.37%), JB2008 (85.43%), DTM2000 (52.73%), and NRLMSISE-00 (12.31%). We demonstrate the robustness of our methodology during a critical time for spacecraft operators -- attempting to operate in the presence of geomagnetic storms, by reconstructing density profiles along the orbits of three LEO satellites during 80 geomagnetic storms. These profiles exhibit high spatial and temporal resolution compared to three operational thermospheric models, highlighting the operational applicability and potential for their use in model validation. Our findings suggest that the increasing availability of precise orbit determination data offers a valuable, yet underutilized, resource that could provide a significant improvement to data assimilative thermospheric models, ultimately enhancing both spacecraft operations and thermospheric modeling efforts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地磁暴期间从精确的低地球轨道航天器星历表获取近实时热层密度
我们提出了一种利用公开的低地球轨道(LEO)航天器星历表生成低时延、高时空分辨率热层密度估算值的方法。这提供了一种生成密度估算值的方法,可供卫星运行和热层界在数据同化背景下使用。利用重力恢复和气候实验后续(GRACE-FO)航天器的加速度计得出的密度作为真相,我们的方法在精确度方面超过了能量耗散率类型的密度检索技术和三种广泛使用的业务密度模型:EDR(103.37%)、JB2008(85.43%)、DTM2000(52.73%)和 NRLMSISE-00(12.31%)。我们在80次地磁暴期间重新构建了三颗低地球轨道卫星沿轨道的密度剖面,从而证明了我们的方法在航天器运营商试图在地磁暴中运行的关键时刻的稳健性。与三个实用热层模型相比,这些剖面图显示出较高的空间和时间分辨率,突出了其在模型验证中的实用性和使用潜力。我们的研究结果表明,精确轨道确定数据的可用性不断提高,提供了一种宝贵但未得到充分利用的资源,可以大大改进数据同化热层模型,最终增强航天器运行和热层建模工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-similar solutions of oscillatory reconnection: parameter study of magnetic field strength and background temperature Post-Keplerian perturbations of the hyperbolic motion in the field of a massive, rotating object On the Euler-type gravitomagnetic orbital effects in the field of a precessing body A Pileup of Coronal Mass Ejections Produced the Largest Geomagnetic Storm in Two Decades Alpha-Proton Differential Flow of A Coronal Mass Ejection at 15 Solar Radii
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1