Liang Wu, Yunxia Zhu, Shengcai Zhu, Deng Zhang, Xiuping Wang, Zhen Xiao, Yanping Tan, Xiaoliang Ouyang, Chunming Li
{"title":"Untargeted Lipidomics Analysis to Discover Lipid Profiles and Biomarkers of Rabbit Acne Model and Reveal Action Mechanism of Isotretinoin","authors":"Liang Wu, Yunxia Zhu, Shengcai Zhu, Deng Zhang, Xiuping Wang, Zhen Xiao, Yanping Tan, Xiaoliang Ouyang, Chunming Li","doi":"10.2147/dddt.s476649","DOIUrl":null,"url":null,"abstract":"<strong>Background:</strong> Acne vulgaris (AV), a chronic inflammatory pilosebaceous disorder, affects 80– 90% of teenagers. This study aimed to discover lipid profiles and biomarkers of the rabbit ear acne model, and investigate the mechanism of isotretinoin in treating acne at the lipid level.<br/><strong>Methods:</strong> Untargeted lipidomic analysis using ultra-high performance liquid chromatography system (UHPLC) coupled to q-extraction plus was performed to identify skin lipid metabolites in blank control (groups C), model group (group M) and isotretinoin group (group T). Multivariate statistical analysis was used to process the lipidomics data.<br/><strong>Results:</strong> A total of 43 lipid classes comprising 6989 lipid species were identified from the mass spectrometry data. The orthogonal partial least squares discriminant analysis (OPLS-DA) model demonstrated significant separation in skin lipidomic profiles between group M and group C. With variable influence on projection (VIP) > 1.0 and P-value < 0.05, 299 significantly different lipid metabolites were identified. These lipid metabolites consisted mainly of ceramides (Cer) (53.85%), phosphatidylethanolamines (PE) (9.03%), phosphatidylcholines (PC)(5.35%), and sphingomyelin (SM)(4.01%). Combining with AUC ≥ 0.9 as the elected criteria, Cer (d18;1_24:0), zymosterol (ZyE)(33:5), Cer (t43:1), ZyE (33:6), ZyE (24:7), and ZyE (35:6) have “high” accuracy. Isotretinoin treatment normalized 25 lipid metabolites in the acne model.<br/><strong>Conclusion:</strong> Our findings provide new insights into the role of lipid metabolism in the pathogenesis of acne and the action mechanism of isotretinoin.<br/><br/>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"60 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/dddt.s476649","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Acne vulgaris (AV), a chronic inflammatory pilosebaceous disorder, affects 80– 90% of teenagers. This study aimed to discover lipid profiles and biomarkers of the rabbit ear acne model, and investigate the mechanism of isotretinoin in treating acne at the lipid level. Methods: Untargeted lipidomic analysis using ultra-high performance liquid chromatography system (UHPLC) coupled to q-extraction plus was performed to identify skin lipid metabolites in blank control (groups C), model group (group M) and isotretinoin group (group T). Multivariate statistical analysis was used to process the lipidomics data. Results: A total of 43 lipid classes comprising 6989 lipid species were identified from the mass spectrometry data. The orthogonal partial least squares discriminant analysis (OPLS-DA) model demonstrated significant separation in skin lipidomic profiles between group M and group C. With variable influence on projection (VIP) > 1.0 and P-value < 0.05, 299 significantly different lipid metabolites were identified. These lipid metabolites consisted mainly of ceramides (Cer) (53.85%), phosphatidylethanolamines (PE) (9.03%), phosphatidylcholines (PC)(5.35%), and sphingomyelin (SM)(4.01%). Combining with AUC ≥ 0.9 as the elected criteria, Cer (d18;1_24:0), zymosterol (ZyE)(33:5), Cer (t43:1), ZyE (33:6), ZyE (24:7), and ZyE (35:6) have “high” accuracy. Isotretinoin treatment normalized 25 lipid metabolites in the acne model. Conclusion: Our findings provide new insights into the role of lipid metabolism in the pathogenesis of acne and the action mechanism of isotretinoin.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.