LFS-Aware Surface Reconstruction From Unoriented 3D Point Clouds

IF 8.4 1区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Multimedia Pub Date : 2024-09-02 DOI:10.1109/TMM.2024.3453050
Rao Fu;Kai Hormann;Pierre Alliez
{"title":"LFS-Aware Surface Reconstruction From Unoriented 3D Point Clouds","authors":"Rao Fu;Kai Hormann;Pierre Alliez","doi":"10.1109/TMM.2024.3453050","DOIUrl":null,"url":null,"abstract":"We present a novel approach for generating isotropic surface triangle meshes directly from unoriented 3D point clouds, with the mesh density adapting to the estimated local feature size (LFS). Popular reconstruction pipelines first reconstruct a dense mesh from the input point cloud and then apply remeshing to obtain an isotropic mesh. The sequential pipeline makes it hard to find a lower-density mesh while preserving more details. Instead, our approach reconstructs both an implicit function and an LFS-aware mesh sizing function directly from the input point cloud, which is then used to produce the final LFS-aware mesh without remeshing. We combine local curvature radius and shape diameter to estimate the LFS directly from the input point clouds. Additionally, we propose a new mesh solver to solve an implicit function whose zero level set delineates the surface without requiring normal orientation. The added value of our approach is generating isotropic meshes directly from 3D point clouds with an LFS-aware density, thus achieving a trade-off between geometric detail and mesh complexity. Our experiments also demonstrate the robustness of our method to noise, outliers, and missing data and can preserve sharp features for CAD point clouds.","PeriodicalId":13273,"journal":{"name":"IEEE Transactions on Multimedia","volume":"26 ","pages":"11415-11427"},"PeriodicalIF":8.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Multimedia","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663233/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel approach for generating isotropic surface triangle meshes directly from unoriented 3D point clouds, with the mesh density adapting to the estimated local feature size (LFS). Popular reconstruction pipelines first reconstruct a dense mesh from the input point cloud and then apply remeshing to obtain an isotropic mesh. The sequential pipeline makes it hard to find a lower-density mesh while preserving more details. Instead, our approach reconstructs both an implicit function and an LFS-aware mesh sizing function directly from the input point cloud, which is then used to produce the final LFS-aware mesh without remeshing. We combine local curvature radius and shape diameter to estimate the LFS directly from the input point clouds. Additionally, we propose a new mesh solver to solve an implicit function whose zero level set delineates the surface without requiring normal orientation. The added value of our approach is generating isotropic meshes directly from 3D point clouds with an LFS-aware density, thus achieving a trade-off between geometric detail and mesh complexity. Our experiments also demonstrate the robustness of our method to noise, outliers, and missing data and can preserve sharp features for CAD point clouds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从无定向三维点云重建具有 LFS 意识的曲面
我们提出了一种直接从未定向三维点云生成各向同性曲面三角形网格的新方法,网格密度与估计的局部特征尺寸(LFS)相适应。流行的重建管道首先从输入点云重建密集网格,然后应用重网格化技术获得各向同性网格。这种顺序管道很难在保留更多细节的同时找到密度更低的网格。取而代之的是,我们的方法直接从输入点云重建隐式函数和 LFS 感知网格大小函数,然后使用它们生成最终的 LFS 感知网格,而无需重网格化。我们结合局部曲率半径和形状直径,直接从输入点云估算 LFS。此外,我们还提出了一种新的网格求解器,用于求解隐式函数,该函数的零水平集无需法线定向即可划定曲面。我们的方法的附加值是直接从三维点云生成各向同性网格,并具有 LFS 感知密度,从而在几何细节和网格复杂度之间实现了权衡。我们的实验还证明了我们的方法对噪声、异常值和缺失数据的鲁棒性,并能保留 CAD 点云的锐利特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Multimedia
IEEE Transactions on Multimedia 工程技术-电信学
CiteScore
11.70
自引率
11.00%
发文量
576
审稿时长
5.5 months
期刊介绍: The IEEE Transactions on Multimedia delves into diverse aspects of multimedia technology and applications, covering circuits, networking, signal processing, systems, software, and systems integration. The scope aligns with the Fields of Interest of the sponsors, ensuring a comprehensive exploration of research in multimedia.
期刊最新文献
Improving Network Interpretability via Explanation Consistency Evaluation Deep Mutual Distillation for Unsupervised Domain Adaptation Person Re-identification Collaborative License Plate Recognition via Association Enhancement Network With Auxiliary Learning and a Unified Benchmark VLDadaptor: Domain Adaptive Object Detection With Vision-Language Model Distillation Camera-Incremental Object Re-Identification With Identity Knowledge Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1