Linear Mountain Waves in Flow Past a Mountain Range with Concavity and Convexity

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-08-30 DOI:10.2151/sola.2024-042
Kazuo Saito
{"title":"Linear Mountain Waves in Flow Past a Mountain Range with Concavity and Convexity","authors":"Kazuo Saito","doi":"10.2151/sola.2024-042","DOIUrl":null,"url":null,"abstract":"</p><p> The interaction of airflow with mountain ranges in a stable atmosphere generates internal gravity waves, leading to wind deceleration on the windward side and acceleration on the lee side. Recent studies have explored airflow over the bended mountain range, characterized by convexity on the windward side and concavity on the lee side. In this study, we have computed linear analytic solutions for three-dimensional mountain waves over such terrains, and examined the surface winds (<i>u</i> and <i>v</i>), and horizontal divergence. </p><p> Our analysis reveals that when the terrain features convexity on the windward side and concavity on the lee side, surface wind speed amplifies within the area of concave region through the low-level convergence. In the bell-cosine mountain range, the maximum downslope wind exceeds that predicted by the analytic linear solution for the two-dimensional bell-shaped mountain range (<i>U</i> + <i>NH</i>/2). However, it does not surpass the maximum wind observed for the 2-dimensional bell-cosine mountain range. The presence of the convex bend in the mountain range yields flow splitting in the upwind side and does not promote downslope wind and wave breaking. </p><p> The presence of concavity in the lee side amplifies the downslope wind by low level convergence in the lee side and convexity in the windward side of a mountain range has the potential to enhance downslope winds when the terrain slope becomes asymmetric. Our findings shed light on the potential enhancement of downslope winds in mountain ranges exhibiting such terrain features.</p>\n<p></p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2151/sola.2024-042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

 The interaction of airflow with mountain ranges in a stable atmosphere generates internal gravity waves, leading to wind deceleration on the windward side and acceleration on the lee side. Recent studies have explored airflow over the bended mountain range, characterized by convexity on the windward side and concavity on the lee side. In this study, we have computed linear analytic solutions for three-dimensional mountain waves over such terrains, and examined the surface winds (u and v), and horizontal divergence.

 Our analysis reveals that when the terrain features convexity on the windward side and concavity on the lee side, surface wind speed amplifies within the area of concave region through the low-level convergence. In the bell-cosine mountain range, the maximum downslope wind exceeds that predicted by the analytic linear solution for the two-dimensional bell-shaped mountain range (U + NH/2). However, it does not surpass the maximum wind observed for the 2-dimensional bell-cosine mountain range. The presence of the convex bend in the mountain range yields flow splitting in the upwind side and does not promote downslope wind and wave breaking.

 The presence of concavity in the lee side amplifies the downslope wind by low level convergence in the lee side and convexity in the windward side of a mountain range has the potential to enhance downslope winds when the terrain slope becomes asymmetric. Our findings shed light on the potential enhancement of downslope winds in mountain ranges exhibiting such terrain features.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流经凹凸山脉的线性山波
在稳定的大气层中,气流与山脉的相互作用会产生内部重力波,导致迎风面的风减速和背风面的风加速。最近的研究探讨了弯曲山脉上的气流,其特点是迎风面凸,背风面凹。在这项研究中,我们计算了这种地形上的三维山波的线性解析解,并研究了表面风(u 和 v)和水平发散。我们的分析表明,当地形的迎风面为凸面,背风面为凹面时,表面风速会通过低空辐合在凹面区域内放大。在钟形山脉中,最大下坡风速超过了二维钟形山脉分析线性解(U + NH/2)的预测值。然而,它并没有超过在二维钟形余弦山脉中观测到的最大风力。山脉凸弯的存在会在上风侧产生气流分流,不会促进下坡风浪的形成。当地形坡度变得不对称时,山脉迎风面的凸起有可能增强下坡风。我们的研究结果阐明了在具有此类地形特征的山脉中,下坡风可能会增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1