An Adaptive Differential Evolution Algorithm Based on Data Preprocessing Method and a New Mutation Strategy to Solve Dynamic Economic Dispatch Considering Generator Constraints
{"title":"An Adaptive Differential Evolution Algorithm Based on Data Preprocessing Method and a New Mutation Strategy to Solve Dynamic Economic Dispatch Considering Generator Constraints","authors":"Ruxin Zhao, Wei Wang, Tingting Zhang, Chang Liu, Lixiang Fu, Jiajie Kang, Hongtan Zhang, Yang Shi, Chao Jiang","doi":"10.1007/s10614-024-10705-2","DOIUrl":null,"url":null,"abstract":"<p>Differential evolution (DE) algorithm is a classical natural-inspired optimization algorithm which has a good. However, with the deepening of research, some researchers found that the quality of the candidate solution of the population in the differential evolution algorithm is poor and its global search ability is not enough when solving the global optimization problem. Therefore, in order to solve the above problems, we proposed an adaptive differential evolution algorithm based on the data processing method and a new mutation strategy (ADEDPMS). In this paper, the data preprocessing method is implemented by <i>k</i>-means clustering algorithm, which is used to divide the initial population into multiple clusters according to the average value of fitness, and select candidate solutions in each cluster according to different proportions. This method improves the quality of candidate solutions of the population to a certain extent. In addition, in order to solve the problem of insufficient global search ability in differential evolution algorithm, we also proposed a new mutation strategy, which is called “DE/current-to-<span>\\({p}_{1}\\)</span> best&<span>\\({p}_{2}\\)</span> best”. This strategy guides the search direction of the differential evolution algorithm by selecting individuals with good fitness, so that its search range is in the most promising candidate solution region, and indirectly increases the population diversity of the algorithm. We also proposed an adaptive parameter control method, which can effectively balance the relationship between the exploration process and the exploitation process to achieve the best performance. In order to verify the effectiveness of the proposed algorithm, the ADEDPMS is compared with five optimization algorithms of the same type in the past three years, which are AAGSA, DFPSO, HGASSO, HHO and VAGWO. In the simulation experiment, 6 benchmark test functions and 4 engineering example problems are used, and the convergence accuracy, convergence speed and stability are fully compared. We used ADEDPMS to solve the dynamic economic dispatch (ED) problem with generator constraints. It is compared with the optimization algorithms used to solve the ED problem in the last three years which are AEFA, AVOA, OOA, SCA and TLBO. The experimental results show that compared with the five latest optimization algorithms proposed in the past three years to solve benchmark functions, engineering example problems and the ED problem, the proposed algorithm has strong competitiveness in each test index.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10705-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Differential evolution (DE) algorithm is a classical natural-inspired optimization algorithm which has a good. However, with the deepening of research, some researchers found that the quality of the candidate solution of the population in the differential evolution algorithm is poor and its global search ability is not enough when solving the global optimization problem. Therefore, in order to solve the above problems, we proposed an adaptive differential evolution algorithm based on the data processing method and a new mutation strategy (ADEDPMS). In this paper, the data preprocessing method is implemented by k-means clustering algorithm, which is used to divide the initial population into multiple clusters according to the average value of fitness, and select candidate solutions in each cluster according to different proportions. This method improves the quality of candidate solutions of the population to a certain extent. In addition, in order to solve the problem of insufficient global search ability in differential evolution algorithm, we also proposed a new mutation strategy, which is called “DE/current-to-\({p}_{1}\) best&\({p}_{2}\) best”. This strategy guides the search direction of the differential evolution algorithm by selecting individuals with good fitness, so that its search range is in the most promising candidate solution region, and indirectly increases the population diversity of the algorithm. We also proposed an adaptive parameter control method, which can effectively balance the relationship between the exploration process and the exploitation process to achieve the best performance. In order to verify the effectiveness of the proposed algorithm, the ADEDPMS is compared with five optimization algorithms of the same type in the past three years, which are AAGSA, DFPSO, HGASSO, HHO and VAGWO. In the simulation experiment, 6 benchmark test functions and 4 engineering example problems are used, and the convergence accuracy, convergence speed and stability are fully compared. We used ADEDPMS to solve the dynamic economic dispatch (ED) problem with generator constraints. It is compared with the optimization algorithms used to solve the ED problem in the last three years which are AEFA, AVOA, OOA, SCA and TLBO. The experimental results show that compared with the five latest optimization algorithms proposed in the past three years to solve benchmark functions, engineering example problems and the ED problem, the proposed algorithm has strong competitiveness in each test index.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.