{"title":"Considering Appropriate Input Features of Neural Network to Calibrate Option Pricing Models","authors":"Hyun-Gyoon Kim, Hyeongmi Kim, Jeonggyu Huh","doi":"10.1007/s10614-024-10686-2","DOIUrl":null,"url":null,"abstract":"<p>Parameter estimation is crucial in using option pricing models, but it is often an ill-conditioned problem. While it has been demonstrated that neural networks can enhance the efficiency of multiple tasks, when performing parameter estimation using option prices data, the neural network approaches are fundamentally vulnerable because the task is one of the ill-conditioned problems. To address the issue, we propose a bijective transformation of the input features of a neural network to transform the ill-conditioned problem into an equivalent well-conditioned problem. This transformation can be simply summarized as using the corresponding implied volatilities as input features instead of option prices. Experiments have shown that the estimation network that use the transformed values as network inputs have significantly improved efficiency compared to the network that use the original values.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"145 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10686-2","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Parameter estimation is crucial in using option pricing models, but it is often an ill-conditioned problem. While it has been demonstrated that neural networks can enhance the efficiency of multiple tasks, when performing parameter estimation using option prices data, the neural network approaches are fundamentally vulnerable because the task is one of the ill-conditioned problems. To address the issue, we propose a bijective transformation of the input features of a neural network to transform the ill-conditioned problem into an equivalent well-conditioned problem. This transformation can be simply summarized as using the corresponding implied volatilities as input features instead of option prices. Experiments have shown that the estimation network that use the transformed values as network inputs have significantly improved efficiency compared to the network that use the original values.
期刊介绍:
Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing