Perron similarities and the nonnegative inverse eigenvalue problem

Charles R. Johnson, Pietro Paparella
{"title":"Perron similarities and the nonnegative inverse eigenvalue problem","authors":"Charles R. Johnson, Pietro Paparella","doi":"arxiv-2409.07682","DOIUrl":null,"url":null,"abstract":"The longstanding \\emph{nonnegative inverse eigenvalue problem} (NIEP) is to\ndetermine which multisets of complex numbers occur as the spectrum of an\nentry-wise nonnegative matrix. Although there are some well-known necessary\nconditions, a solution to the NIEP is far from known. An invertible matrix is called a \\emph{Perron similarity} if it diagonalizes\nan irreducible, nonnegative matrix. Johnson and Paparella developed the theory\nof real Perron similarities. Here, we fully develop the theory of complex\nPerron similarities. Each Perron similarity gives a nontrivial polyhedral cone and polytope of\nrealizable spectra (thought of as vectors in complex Euclidean space). The\nextremals of these convex sets are finite in number, and their determination\nfor each Perron similarity would solve the diagonalizable NIEP, a major portion\nof the entire problem. By considering Perron similarities of certain realizing\nmatrices of Type I Karpelevich arcs, large portions of realizable spectra are\ngenerated for a given positive integer. This is demonstrated by producing a\nnearly complete geometrical representation of the spectra of $4 \\times 4$\nstochastic matrices. Similar to the Karpelevich region, it is shown that the subset of complex\nEuclidean space comprising the spectra of stochastic matrices is compact and\nstar-shaped. \\emph{Extremal} elements of the set are defined and shown to be on\nthe boundary. It is shown that the polyhedral cone and convex polytope of the\n\\emph{discrete Fourier transform (DFT) matrix} corresponds to the conical hull\nand convex hull of its rows, respectively. Similar results are established for\nmultifold Kronecker products of DFT matrices and multifold Kronecker products\nof DFT matrices and Walsh matrices. These polytopes are of great significance\nwith respect to the NIEP because they are extremal in the region comprising the\nspectra of stochastic matrices.","PeriodicalId":501373,"journal":{"name":"arXiv - MATH - Spectral Theory","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Spectral Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The longstanding \emph{nonnegative inverse eigenvalue problem} (NIEP) is to determine which multisets of complex numbers occur as the spectrum of an entry-wise nonnegative matrix. Although there are some well-known necessary conditions, a solution to the NIEP is far from known. An invertible matrix is called a \emph{Perron similarity} if it diagonalizes an irreducible, nonnegative matrix. Johnson and Paparella developed the theory of real Perron similarities. Here, we fully develop the theory of complex Perron similarities. Each Perron similarity gives a nontrivial polyhedral cone and polytope of realizable spectra (thought of as vectors in complex Euclidean space). The extremals of these convex sets are finite in number, and their determination for each Perron similarity would solve the diagonalizable NIEP, a major portion of the entire problem. By considering Perron similarities of certain realizing matrices of Type I Karpelevich arcs, large portions of realizable spectra are generated for a given positive integer. This is demonstrated by producing a nearly complete geometrical representation of the spectra of $4 \times 4$ stochastic matrices. Similar to the Karpelevich region, it is shown that the subset of complex Euclidean space comprising the spectra of stochastic matrices is compact and star-shaped. \emph{Extremal} elements of the set are defined and shown to be on the boundary. It is shown that the polyhedral cone and convex polytope of the \emph{discrete Fourier transform (DFT) matrix} corresponds to the conical hull and convex hull of its rows, respectively. Similar results are established for multifold Kronecker products of DFT matrices and multifold Kronecker products of DFT matrices and Walsh matrices. These polytopes are of great significance with respect to the NIEP because they are extremal in the region comprising the spectra of stochastic matrices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
佩伦相似性与非负逆特征值问题
长期以来,emph{nonnegative inverse eigenvalue problem}(NIEP)就是要确定哪些复数多集出现在进位非负矩阵的谱中。尽管有一些众所周知的必要条件,但 NIEP 的解还远未可知。如果一个可逆矩阵对角化了一个不可还原的非负矩阵,那么这个可逆矩阵就被称为emph{Perron相似性}矩阵。约翰逊和帕帕雷拉提出了实波伦相似性理论。在此,我们将全面发展复珀伦相似性理论。每个 Perron 相似性都给出了一个非对称的多面体锥体和可实现谱(可视为复欧几里得空间中的向量)的多面体。这些凸集的极值数量是有限的,确定每个 Perron 相似性的极值就能求解可对角化 NIEP,这是整个问题的主要部分。通过考虑 I 型卡尔佩列维奇弧的某些实现矩阵的佩伦相似性,可以生成给定正整数的大部分可实现谱。这一点通过产生 $4 \times 4$ 随机矩阵谱的近乎完整的几何表示得到了证明。与卡尔佩列维奇区域相似,研究表明,包含随机矩阵谱的复欧几里得空间子集是紧凑的星形。\定义了该集合的emph{Extremal}元素,并证明它们位于边界上。结果表明,emph{离散傅里叶变换(DFT)矩阵}的多面体锥体和凸多面体分别对应于其行的锥体和凸体。DFT 矩阵的多折 Kronecker 积和 DFT 矩阵与 Walsh 矩阵的多折 Kronecker 积也有类似的结果。这些多边形对 NIEP 具有重要意义,因为它们在随机矩阵谱组成的区域内是极值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uniform resolvent estimates, smoothing effects and spectral stability for the Heisenberg sublaplacian Topological and dynamical aspects of some spectral invariants of contact manifolds with circle action Open problem: Violation of locality for Schrödinger operators with complex potentials Arbitrarily Finely Divisible Matrices A review of a work by Raymond: Sturmian Hamiltonians with a large coupling constant -- periodic approximations and gap labels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1