Spatio-temporal SiamFC: per-clip visual tracking with siamese non-local 3D convolutional networks and multi-template updating

IF 3.7 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pattern Analysis and Applications Pub Date : 2024-09-06 DOI:10.1007/s10044-024-01328-2
Yan Gui, Yiru Ou, Min Liang, Jianming Zhang, Zhihua Chen
{"title":"Spatio-temporal SiamFC: per-clip visual tracking with siamese non-local 3D convolutional networks and multi-template updating","authors":"Yan Gui, Yiru Ou, Min Liang, Jianming Zhang, Zhihua Chen","doi":"10.1007/s10044-024-01328-2","DOIUrl":null,"url":null,"abstract":"<p>Recently, Siamese network based approaches show promising results on visual object tracking. These methods typically handle the tracking task by per-frame object detection and thus fail to fully exploit the rich temporal contexts among successive frames, which are important for accurate and robust object tracking. To benefit from the temporal information, in this paper, we investigate a per-clip tracking scheme in the Siamese-based approach and present a novel spatio-temporal SiamFC method for high-performance visual tracking. More specifically, we incorporate a non-local 3D fully convolutional network into a Siamese framework, which allows the model to act directly on the inputs of multiple templates and search video clips and to extract features from both spatial and temporal dimensions, thereby capturing the temporal information encoded in multiple video frames. We then propose a multi-template matching module to learn a representative tracking model using spatio-temporal template features and propagate informative target cues from the template set to the search clip using attention, which facilitate the object searching in clips. During inference, we employ a confident search region cropping and a dynamic multi-template update mechanism for stable and robust per-clip tracking. Experiments on six benchmark datasets show that our spatio-temporal SiamFC achieves competitive performance compared to state-of-the-art while running at approximatively 60 FPS on GPU. Codes are available at https://github.com/liangminstu/STSiamFC.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"14 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01328-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, Siamese network based approaches show promising results on visual object tracking. These methods typically handle the tracking task by per-frame object detection and thus fail to fully exploit the rich temporal contexts among successive frames, which are important for accurate and robust object tracking. To benefit from the temporal information, in this paper, we investigate a per-clip tracking scheme in the Siamese-based approach and present a novel spatio-temporal SiamFC method for high-performance visual tracking. More specifically, we incorporate a non-local 3D fully convolutional network into a Siamese framework, which allows the model to act directly on the inputs of multiple templates and search video clips and to extract features from both spatial and temporal dimensions, thereby capturing the temporal information encoded in multiple video frames. We then propose a multi-template matching module to learn a representative tracking model using spatio-temporal template features and propagate informative target cues from the template set to the search clip using attention, which facilitate the object searching in clips. During inference, we employ a confident search region cropping and a dynamic multi-template update mechanism for stable and robust per-clip tracking. Experiments on six benchmark datasets show that our spatio-temporal SiamFC achieves competitive performance compared to state-of-the-art while running at approximatively 60 FPS on GPU. Codes are available at https://github.com/liangminstu/STSiamFC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时空 SiamFC:利用连体非局部三维卷积网络和多模板更新进行每片段视觉跟踪
最近,基于连体网络的方法在视觉物体跟踪方面取得了可喜的成果。这些方法通常通过每帧物体检测来处理跟踪任务,因此无法充分利用连续帧之间丰富的时间背景,而这些背景对于准确、稳健地跟踪物体非常重要。为了从时间信息中获益,我们在本文中研究了基于 Siamese 方法中的每片段跟踪方案,并提出了一种用于高性能视觉跟踪的新型时空 SiamFC 方法。更具体地说,我们将非局部三维全卷积网络纳入 Siamese 框架,使模型能够直接作用于多个模板和搜索视频片段的输入,并从空间和时间维度提取特征,从而捕捉多个视频帧中编码的时间信息。然后,我们提出了一个多模板匹配模块,利用时空模板特征学习具有代表性的跟踪模型,并利用注意力将模板集中的信息性目标线索传播到搜索片段中,从而促进片段中的目标搜索。在推理过程中,我们采用了可靠的搜索区域裁剪和动态多模板更新机制,以实现稳定而稳健的每个片段跟踪。在六个基准数据集上进行的实验表明,我们的时空 SiamFC 在 GPU 上以近似 60 FPS 的速度运行时,与最先进的技术相比,性能极具竞争力。代码见 https://github.com/liangminstu/STSiamFC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pattern Analysis and Applications
Pattern Analysis and Applications 工程技术-计算机:人工智能
CiteScore
7.40
自引率
2.60%
发文量
76
审稿时长
13.5 months
期刊介绍: The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.
期刊最新文献
K-BEST subspace clustering: kernel-friendly block-diagonal embedded and similarity-preserving transformed subspace clustering Research on decoupled adaptive graph convolution networks based on skeleton data for action recognition Hidden Markov models with multivariate bounded asymmetric student’s t-mixture model emissions YOLOv7-GCM: a detection algorithm for creek waste based on improved YOLOv7 model LDC-PP-YOLOE: a lightweight model for detecting and counting citrus fruit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1