{"title":"Logging response prediction of high-lithium coal seam based on K-means clustering algorithm","authors":"Xiwei Mu, Yanming Zhu, Kailong Dou, Ying Shi, Manli Huang","doi":"10.3389/feart.2024.1443458","DOIUrl":null,"url":null,"abstract":"Lithium in coal, as a new type of associated mineral resource, has considerable potential for exploration. Exploration of high-lithium coal seams is essential for developing and using the associated lithium resources. To explore the distribution of lithium resources in the early stages of development in coal seams, the relationship between coal seam logging data and lithium content was analyzed by taking Guojiadi Coal Mine (China) as example. By analyzing the correlation between the different logging curves and the lithium content in coal and combining the K-means algorithm to identify the logging characteristics of different lithium-containing coal seams, we finally obtained the logging identification characteristics of high-lithium coal seams. The results reveal differences in the logging curves of coal seams with different lithium contents. The natural gamma and lateral resistivity of high-lithium coal seams are approximately 80 API and 100 Ω.M, respectively. Our study shows that the early identification of high-lithium coal seams can be evaluated from a logging perspective. We propose a preliminary identification method of high-lithium coal seam based on logging curve parameters by clustering analysis of borehole logging data to achieve accurate prediction.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":"3 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1443458","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium in coal, as a new type of associated mineral resource, has considerable potential for exploration. Exploration of high-lithium coal seams is essential for developing and using the associated lithium resources. To explore the distribution of lithium resources in the early stages of development in coal seams, the relationship between coal seam logging data and lithium content was analyzed by taking Guojiadi Coal Mine (China) as example. By analyzing the correlation between the different logging curves and the lithium content in coal and combining the K-means algorithm to identify the logging characteristics of different lithium-containing coal seams, we finally obtained the logging identification characteristics of high-lithium coal seams. The results reveal differences in the logging curves of coal seams with different lithium contents. The natural gamma and lateral resistivity of high-lithium coal seams are approximately 80 API and 100 Ω.M, respectively. Our study shows that the early identification of high-lithium coal seams can be evaluated from a logging perspective. We propose a preliminary identification method of high-lithium coal seam based on logging curve parameters by clustering analysis of borehole logging data to achieve accurate prediction.
期刊介绍:
Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet.
This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet.
The journal welcomes outstanding contributions in any domain of Earth Science.
The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission.
General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.