{"title":"A New Method to Accurately Measure Lithium-Ion Battery Specific Heat Capacity with ARC Heating-Waiting Process","authors":"Anqi Teng, Yongqi Li, Yue Zhang, Youwei Wen, Laifeng Song, Qikai Lei, Zhixiang Cheng, Qiangling Duan, Qingsong Wang","doi":"10.1007/s10694-024-01649-y","DOIUrl":null,"url":null,"abstract":"<p>Battery specific heat capacity is essential for calculation and simulation in battery thermal runaway and thermal management studies. Currently, there exist several non-destructive techniques for measuring the specific heat capacity of a battery. Approaches incorporate thermal modeling, specific heat capacity computation via an external heat source, and harnessing internal battery-generated heat. Accurately measuring the specific heat capacity of a battery by fast, intuitive, and general experimental methods has significant application value. This paper proposes a simple but precise method (the heating-waiting method) for measuring the specific heat capacity of the battery based on a constant temperature environment. A calibration scheme was designed to obtain the specific heat capacity calculation parameters. Specific experiments were designed to maximize the external heat received by the battery. Homogeneous temperature distribution within the battery facilitates the precise determination of the battery’s specific heat capacity. Results demonstrate that utilizing accelerating rate calorimeter (ARC) as a reliable heating source can greatly enhance the precision of the test (from 2.30% to 0.29%). Optimizing the experimental apparatus is advantageous in mitigating the confounding effects of extraneous variables on the experimental outcomes, thereby enhancing the reliability and operability. Hence, it is vital to devise a trial plan based on the battery’s attributes to guarantee the scheme’s universality and practicability.</p>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"20 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10694-024-01649-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Battery specific heat capacity is essential for calculation and simulation in battery thermal runaway and thermal management studies. Currently, there exist several non-destructive techniques for measuring the specific heat capacity of a battery. Approaches incorporate thermal modeling, specific heat capacity computation via an external heat source, and harnessing internal battery-generated heat. Accurately measuring the specific heat capacity of a battery by fast, intuitive, and general experimental methods has significant application value. This paper proposes a simple but precise method (the heating-waiting method) for measuring the specific heat capacity of the battery based on a constant temperature environment. A calibration scheme was designed to obtain the specific heat capacity calculation parameters. Specific experiments were designed to maximize the external heat received by the battery. Homogeneous temperature distribution within the battery facilitates the precise determination of the battery’s specific heat capacity. Results demonstrate that utilizing accelerating rate calorimeter (ARC) as a reliable heating source can greatly enhance the precision of the test (from 2.30% to 0.29%). Optimizing the experimental apparatus is advantageous in mitigating the confounding effects of extraneous variables on the experimental outcomes, thereby enhancing the reliability and operability. Hence, it is vital to devise a trial plan based on the battery’s attributes to guarantee the scheme’s universality and practicability.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.