Modeling Fire Company Staffing to Investigate its Effect on Effective Response Force Times to Structure Fires Using Local Incident Data

IF 2.3 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Fire Technology Pub Date : 2024-09-05 DOI:10.1007/s10694-024-01642-5
Evgeniy P. Ivanov
{"title":"Modeling Fire Company Staffing to Investigate its Effect on Effective Response Force Times to Structure Fires Using Local Incident Data","authors":"Evgeniy P. Ivanov","doi":"10.1007/s10694-024-01642-5","DOIUrl":null,"url":null,"abstract":"<p>Fighting structure fires necessitates the deployment of an effective response force (ERF) capable of ensuring both effective firefighting and the safety of firefighters. The article aims to investigate the effect of company staffing on ERF response times and to compare these findings with data from the National Institute of Standards and Technology’s (NIST) Report on residential fireground field experiments. The investigation revolves around modeling the crew size of fire engines and ladder trucks through a 4-step approach. Given the challenges of obtaining publicly available apparatus response data at the national level needed for any ERF time calculations, the approach taken is based on utilizing local incident and apparatus response data from a single fire department. Three datasets are developed, corresponding to 3-person, 4-person, and 5-person crews. Comparison among these datasets hinges on calculating the 90th percentile of ERF assembly times and total response times, as well as assessing the percentage of times the target response times are met. The results show improvements in response times across all up-staffing scenarios, underscoring the direct positive effect of crew size up-staffing on ERF response times. Specifically, when transitioning from 3-person to 4-person crews, the biggest improvements occur in moderate and high-risk structure fire incidents, with moderate-risk fires seeing a reduction of over 2 full minutes in all response time segments. Elevating crew sizes from 4-person to 5-person teams yields the most significant gains in special risk structure fires, resulting in a remarkable 10-min improvement in both ERF assembly time and total response time. In conclusion, this study provides recommendations for optimizing incident data quality and considerations to take into account when making decisions for crew upstaffing.</p>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"28 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10694-024-01642-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fighting structure fires necessitates the deployment of an effective response force (ERF) capable of ensuring both effective firefighting and the safety of firefighters. The article aims to investigate the effect of company staffing on ERF response times and to compare these findings with data from the National Institute of Standards and Technology’s (NIST) Report on residential fireground field experiments. The investigation revolves around modeling the crew size of fire engines and ladder trucks through a 4-step approach. Given the challenges of obtaining publicly available apparatus response data at the national level needed for any ERF time calculations, the approach taken is based on utilizing local incident and apparatus response data from a single fire department. Three datasets are developed, corresponding to 3-person, 4-person, and 5-person crews. Comparison among these datasets hinges on calculating the 90th percentile of ERF assembly times and total response times, as well as assessing the percentage of times the target response times are met. The results show improvements in response times across all up-staffing scenarios, underscoring the direct positive effect of crew size up-staffing on ERF response times. Specifically, when transitioning from 3-person to 4-person crews, the biggest improvements occur in moderate and high-risk structure fire incidents, with moderate-risk fires seeing a reduction of over 2 full minutes in all response time segments. Elevating crew sizes from 4-person to 5-person teams yields the most significant gains in special risk structure fires, resulting in a remarkable 10-min improvement in both ERF assembly time and total response time. In conclusion, this study provides recommendations for optimizing incident data quality and considerations to take into account when making decisions for crew upstaffing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用当地事故数据建立消防队人员配备模型,研究其对结构火灾有效响应时间的影响
扑救建筑火灾需要部署一支有效的应急部队(ERF),以确保有效灭火和消防员的安全。本文旨在研究连队人员配置对有效反应部队响应时间的影响,并将这些研究结果与美国国家标准与技术研究院(NIST)的住宅火灾现场实验报告中的数据进行比较。调查围绕消防车和云梯车的人员规模建模展开,分为 4 个步骤。由于难以获得任何 ERF 时间计算所需的国家级公开设备响应数据,因此采用的方法是利用单个消防部门的本地事故和设备响应数据。我们建立了三个数据集,分别对应 3 人、4 人和 5 人小组。对这些数据集进行比较的关键是计算 ERF 组装时间和总响应时间的第 90 个百分位数,以及评估达到目标响应时间的百分比。结果表明,在所有增加人员配置的情况下,响应时间都有所改善,这突出表明了增加人员配置对应急响应时间的直接积极影响。具体而言,从 3 人小组过渡到 4 人小组时,中度和高风险结构火灾事故的响应时间缩短幅度最大,中度风险火灾的所有响应时间段都缩短了整整 2 分钟以上。将 4 人小组提升至 5 人小组,在特殊风险的建筑火灾中取得了最显著的收益,使应急救援队的集结时间和总响应时间都显著缩短了 10 分钟。总之,本研究提供了优化事故数据质量的建议,以及在决定增加人员编制时应考虑的因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fire Technology
Fire Technology 工程技术-材料科学:综合
CiteScore
6.60
自引率
14.70%
发文量
137
审稿时长
7.5 months
期刊介绍: Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis. The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large. It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.
期刊最新文献
Thermal Degradation of Mechanical Properties in Super Ductile Reinforcing Steel Bars: A Comparative Study with Conventional Bars Flame Retarded Adhesive Tapes and Their Influence on the Fire Behavior of Bonded Parts Experimental and Numerical Study on Early-Warning Approach for Fire-Induced Collapse of Steel Portal Frame Based on Rotational Angles Water Spray Effects on Fire Smoke Stratification in a Symmetrical V-Shaped Tunnel Fire Video Intelligent Monitoring Method Based on Moving Target Enhancement and PRV-YOLO Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1