Sriram Bharath Hariharan, Paul M. Anderson, Yejun Wang, Waruna D. Kulatilaka, Michael J. Gollner, Elaine S. Oran
{"title":"The chemical structure of triple flames in laminar blue whirls","authors":"Sriram Bharath Hariharan, Paul M. Anderson, Yejun Wang, Waruna D. Kulatilaka, Michael J. Gollner, Elaine S. Oran","doi":"10.1016/j.proci.2024.105756","DOIUrl":null,"url":null,"abstract":"The blue whirl is a conical, near-limit flame with a bright, blue ring, occurring at low heat-release rates that can stabilize over a pool of liquid fuel. This unique structure forms following suppression of soot formation in a laminar fire whirl under the influence of vortex breakdown. Recent literature on the blue whirl has hypothesized and predicted the existence of a triple flame at the blue ring. In this work, we explore the distribution of various chemical species in the flame to quantitatively establish a map of equivalence ratio around the flame. Using high-speed chemiluminescence and planar laser-induced fluorescence, the distribution of OH, PAH and CH radicals were measured. The OH*/CH* ratio was used to estimate the local equivalence ratio. Results show that the blue ring is mostly stoichiometric, but there is a small rich region below it, towards the fuel layer, and a lean region above it, towards the wake of the vortex breakdown bubble. This structure provides experimental evidence that a triple flame exists in the blue whirl. The time scales of flow within the recirculation zone are estimated using soot traces that are observed occasionally, and then used to estimate a range of Damköhler numbers that can lead to stable blue whirl formation, providing an important scaling factor to design clean, practical burners using the blue whirl regime.","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"31 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.proci.2024.105756","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The blue whirl is a conical, near-limit flame with a bright, blue ring, occurring at low heat-release rates that can stabilize over a pool of liquid fuel. This unique structure forms following suppression of soot formation in a laminar fire whirl under the influence of vortex breakdown. Recent literature on the blue whirl has hypothesized and predicted the existence of a triple flame at the blue ring. In this work, we explore the distribution of various chemical species in the flame to quantitatively establish a map of equivalence ratio around the flame. Using high-speed chemiluminescence and planar laser-induced fluorescence, the distribution of OH, PAH and CH radicals were measured. The OH*/CH* ratio was used to estimate the local equivalence ratio. Results show that the blue ring is mostly stoichiometric, but there is a small rich region below it, towards the fuel layer, and a lean region above it, towards the wake of the vortex breakdown bubble. This structure provides experimental evidence that a triple flame exists in the blue whirl. The time scales of flow within the recirculation zone are estimated using soot traces that are observed occasionally, and then used to estimate a range of Damköhler numbers that can lead to stable blue whirl formation, providing an important scaling factor to design clean, practical burners using the blue whirl regime.
期刊介绍:
The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review.
Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts
The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.