{"title":"Ceramics as potential materials in pollution prevention and control","authors":"Poonam Pipil, Tapasya Tomer, Ritu Payal","doi":"10.1111/ijac.14902","DOIUrl":null,"url":null,"abstract":"<p>The social progress, economic growth, and meteoric urbanization prompt the exploitation of available resources triggering the contagion of the biological and physical elements of the atmosphere irrationally causing global environmental pollution. Environmental contamination monitoring is a dire necessity. Although a number of technologies find mention in the literature for environmental remediation, however, environmental catalysis is an advanced steadily growing technique for pollution abatement. In this dimension, ceramic materials have turned heads due to their wide-scale application areas. Hitherto, research is being done on advanced ceramics to fabricate novel modules for energy storage applications, in designing green buildings, pollution rheostats, and environmental engineering. This article deals with the abatement of environmental contaminants by adopting various methodologies such as aerobic and anaerobic biological treatments, adsorption, chemical oxidation, membrane separation, photocatalysis, ozonation using the ceramic as precursor materials. The ceramic membranes are cost-effective, ecofriendly, efficacious, and green approach to obliterate toxins and harmful gases released in environment. Even though, limited literature is available on the abolition of harmful contaminants from air and soil using ceramic materials, an attempt has been made to present currently available data with best of our knowledge. This article will sensitize researchers to refabricate novel materials for environment sustainability.</p>","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"21 6","pages":"3812-3828"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ijac.14902","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The social progress, economic growth, and meteoric urbanization prompt the exploitation of available resources triggering the contagion of the biological and physical elements of the atmosphere irrationally causing global environmental pollution. Environmental contamination monitoring is a dire necessity. Although a number of technologies find mention in the literature for environmental remediation, however, environmental catalysis is an advanced steadily growing technique for pollution abatement. In this dimension, ceramic materials have turned heads due to their wide-scale application areas. Hitherto, research is being done on advanced ceramics to fabricate novel modules for energy storage applications, in designing green buildings, pollution rheostats, and environmental engineering. This article deals with the abatement of environmental contaminants by adopting various methodologies such as aerobic and anaerobic biological treatments, adsorption, chemical oxidation, membrane separation, photocatalysis, ozonation using the ceramic as precursor materials. The ceramic membranes are cost-effective, ecofriendly, efficacious, and green approach to obliterate toxins and harmful gases released in environment. Even though, limited literature is available on the abolition of harmful contaminants from air and soil using ceramic materials, an attempt has been made to present currently available data with best of our knowledge. This article will sensitize researchers to refabricate novel materials for environment sustainability.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;