Xuekun Tian, Zhenyi Zhao, Xusheng Liu, Chengliang Ma, Lei Liu, Xinhong Liu
{"title":"Enhancing the mechanical properties of Al2O3‐C refractory: Carbonized coconut shell as a substitution for graphite","authors":"Xuekun Tian, Zhenyi Zhao, Xusheng Liu, Chengliang Ma, Lei Liu, Xinhong Liu","doi":"10.1111/ijac.14895","DOIUrl":null,"url":null,"abstract":"At present, graphite is commonly used as the carbon source in Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>‐C refractory. However, graphite resources are limited and belong to the category of nonrenewable resources. Coconut shell is a biomass material with low cost, low impurity, and high reactivity, and also belongs to renewable resources. Therefore, the research for using coconut shell carbon as a substitution for graphite in Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>‐C refractory has great significance. In this work, the coconut shell was firstly carbonized at 200–1000°C in flowing argon, and the microstructure of the carbonized coconut shells was investigated. Then the carbonized coconut shell powder was introduced into Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>‐C refractory instead of graphite, and the effect of carbonized coconut shell on mechanical properties and microstructure evolution of materials was investigated. The results show that the carbonized coconut shell has porous structures, composed of amorphous carbon and disordered micro‐graphite with many defects, endowing its high reactivity. Compared with graphite, the carbonized coconut shell promotes the Si and Al to in situ formation of nonoxide ceramic whiskers (SiC, Al<jats:sub>4</jats:sub>C<jats:sub>3</jats:sub>, and AlN), which play a strengthening and toughening role in the materials. When graphite is replaced by 1 wt% carbonized coconut shell, the residual strength ratio of samples increased from 81.8% to 90.2%, and that of the hot modulus of rupture increased from 17.53 MPa to 18.47 MPa.","PeriodicalId":13903,"journal":{"name":"International Journal of Applied Ceramic Technology","volume":"7 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Ceramic Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/ijac.14895","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
At present, graphite is commonly used as the carbon source in Al2O3‐C refractory. However, graphite resources are limited and belong to the category of nonrenewable resources. Coconut shell is a biomass material with low cost, low impurity, and high reactivity, and also belongs to renewable resources. Therefore, the research for using coconut shell carbon as a substitution for graphite in Al2O3‐C refractory has great significance. In this work, the coconut shell was firstly carbonized at 200–1000°C in flowing argon, and the microstructure of the carbonized coconut shells was investigated. Then the carbonized coconut shell powder was introduced into Al2O3‐C refractory instead of graphite, and the effect of carbonized coconut shell on mechanical properties and microstructure evolution of materials was investigated. The results show that the carbonized coconut shell has porous structures, composed of amorphous carbon and disordered micro‐graphite with many defects, endowing its high reactivity. Compared with graphite, the carbonized coconut shell promotes the Si and Al to in situ formation of nonoxide ceramic whiskers (SiC, Al4C3, and AlN), which play a strengthening and toughening role in the materials. When graphite is replaced by 1 wt% carbonized coconut shell, the residual strength ratio of samples increased from 81.8% to 90.2%, and that of the hot modulus of rupture increased from 17.53 MPa to 18.47 MPa.
期刊介绍:
The International Journal of Applied Ceramic Technology publishes cutting edge applied research and development work focused on commercialization of engineered ceramics, products and processes. The publication also explores the barriers to commercialization, design and testing, environmental health issues, international standardization activities, databases, and cost models. Designed to get high quality information to end-users quickly, the peer process is led by an editorial board of experts from industry, government, and universities. Each issue focuses on a high-interest, high-impact topic plus includes a range of papers detailing applications of ceramics. Papers on all aspects of applied ceramics are welcome including those in the following areas:
Nanotechnology applications;
Ceramic Armor;
Ceramic and Technology for Energy Applications (e.g., Fuel Cells, Batteries, Solar, Thermoelectric, and HT Superconductors);
Ceramic Matrix Composites;
Functional Materials;
Thermal and Environmental Barrier Coatings;
Bioceramic Applications;
Green Manufacturing;
Ceramic Processing;
Glass Technology;
Fiber optics;
Ceramics in Environmental Applications;
Ceramics in Electronic, Photonic and Magnetic Applications;