Chenyang Wang;Hao Yu;Xiuhua Li;Fei Ma;Xiaofei Wang;Tarik Taleb;Victor C. M. Leung
{"title":"Dependency-Aware Microservice Deployment for Edge Computing: A Deep Reinforcement Learning Approach With Network Representation","authors":"Chenyang Wang;Hao Yu;Xiuhua Li;Fei Ma;Xiaofei Wang;Tarik Taleb;Victor C. M. Leung","doi":"10.1109/TMC.2024.3453069","DOIUrl":null,"url":null,"abstract":"The popularity of microservices in industry has sparked much attention in the research community. Despite significant progress in microservice deployment for resource-intensive services and applications at the network edge, the intricate dependencies among microservices are often overlooked, and some studies underestimate the importance of system context extraction in deployment strategies. This paper addresses these issues by formulating the microservice deployment problem as a max-min problem, considering system cost and quality of service (QoS) jointly. We first study the attention-based microservice representation (AMR) method to achieve effective system context extraction. In this way, the contributions of different computing power providers (users, edge servers, or cloud servers) in the networks can be effectively paid attention to. Subsequently, we propose the attention-modified soft actor-critic (ASAC) algorithm to tackle the microservice deployment problem. ASAC leverages attention mechanisms to enhance decision-making and adapt to changing system dynamics. Our simulation results demonstrate ASAC's effectiveness, prioritizing average system cost and reward compared to the other state-of-the-art algorithms.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"23 12","pages":"14737-14753"},"PeriodicalIF":7.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663201/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The popularity of microservices in industry has sparked much attention in the research community. Despite significant progress in microservice deployment for resource-intensive services and applications at the network edge, the intricate dependencies among microservices are often overlooked, and some studies underestimate the importance of system context extraction in deployment strategies. This paper addresses these issues by formulating the microservice deployment problem as a max-min problem, considering system cost and quality of service (QoS) jointly. We first study the attention-based microservice representation (AMR) method to achieve effective system context extraction. In this way, the contributions of different computing power providers (users, edge servers, or cloud servers) in the networks can be effectively paid attention to. Subsequently, we propose the attention-modified soft actor-critic (ASAC) algorithm to tackle the microservice deployment problem. ASAC leverages attention mechanisms to enhance decision-making and adapt to changing system dynamics. Our simulation results demonstrate ASAC's effectiveness, prioritizing average system cost and reward compared to the other state-of-the-art algorithms.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.