I. D. Bryukhanov, O. I. Kuchinskaia, E. V. Ni, M. S. Penzin, I. V. Zhivotenyuk, A. A. Doroshkevich, N. S. Kirillov, A. P. Stykon, V. V. Bryukhanova, I. V. Samokhvalov
{"title":"Optical and Geometrical Characteristics of High-Level Clouds from the 2009–2023 Data on Laser Polarization Sensing in Tomsk","authors":"I. D. Bryukhanov, O. I. Kuchinskaia, E. V. Ni, M. S. Penzin, I. V. Zhivotenyuk, A. A. Doroshkevich, N. S. Kirillov, A. P. Stykon, V. V. Bryukhanova, I. V. Samokhvalov","doi":"10.1134/S1024856024700441","DOIUrl":null,"url":null,"abstract":"<p>To improve the accuracy of weather and climate forecasts, a deeper understanding of atmospheric processes and phenomena, which are determined, among other things, by high-level clouds (HLCs), is required. The experimental results on polarization laser sensing of high-level clouds are presented. The data of systematic (from December 2009 to present) lidar measurements performed with the high-altitude matrix polarization lidar developed at the Tomsk State University are combined. Optical (backscattering phase matrix, optical depth, and scattering ratio) and geometric (lower and upper boundary altitudes and vertical thickness) characteristics of clouds are determined from the lidar measurements. The dataset is supplemented with corresponding vertical profiles of meteorological quantities (temperature, relative and specific humidity, and wind direction and speed) obtained from radiosonde observations and ERA5 reanalysis. The frequency of lidar detection of HLCs and those of them which are characterized by the preferential horizontal orientation of nonspherical ice particles is estimated. The results were combined into a database and used to create a software product based on neural networks to retrieve the dependences between the atmospheric meteorological parameters and HLC optical characteristics. The database can be used for various training options in solving problems of atmospheric optics including independent ones.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the accuracy of weather and climate forecasts, a deeper understanding of atmospheric processes and phenomena, which are determined, among other things, by high-level clouds (HLCs), is required. The experimental results on polarization laser sensing of high-level clouds are presented. The data of systematic (from December 2009 to present) lidar measurements performed with the high-altitude matrix polarization lidar developed at the Tomsk State University are combined. Optical (backscattering phase matrix, optical depth, and scattering ratio) and geometric (lower and upper boundary altitudes and vertical thickness) characteristics of clouds are determined from the lidar measurements. The dataset is supplemented with corresponding vertical profiles of meteorological quantities (temperature, relative and specific humidity, and wind direction and speed) obtained from radiosonde observations and ERA5 reanalysis. The frequency of lidar detection of HLCs and those of them which are characterized by the preferential horizontal orientation of nonspherical ice particles is estimated. The results were combined into a database and used to create a software product based on neural networks to retrieve the dependences between the atmospheric meteorological parameters and HLC optical characteristics. The database can be used for various training options in solving problems of atmospheric optics including independent ones.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.