Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions

IF 4.4 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Science China Technological Sciences Pub Date : 2024-09-05 DOI:10.1007/s11431-024-2649-3
YunChun Yang, WenCong Shao, TianYang Yang, HuiMing Zou, ChangQing Tian
{"title":"Performance analysis of an R290 vapor-injection heat pump system for electric vehicles in cold regions","authors":"YunChun Yang, WenCong Shao, TianYang Yang, HuiMing Zou, ChangQing Tian","doi":"10.1007/s11431-024-2649-3","DOIUrl":null,"url":null,"abstract":"<p>High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effects of refrigerant charge mass, injection pressure, and in-cabin air temperature are analyzed in ambient temperatures from −30°C to 0°C. The results show that the vapor-injection system can increase the coefficient of performance (COP) and heating capacity by 14.3% and 15.9% at 0°C/20°C (ambient/in-cabin temperature) compared with the basic system, and this increase becomes more significant at −20°C/20°C with improvements of 32.5% and 38.1%, respectively. At a lower ambient temperature of −20°C, increasing refrigerant charge mass contributes to a more pronounced increase in heating capacity than at 0°C, which results from the more significant increase in injection mass flow. The optimal COP at various injection pressures are 2.07 and 1.63 at 0°C and −20°C ambient temperatures, corresponding to the relative injection pressures of 0.60 and 0.57, and the injection flow ratios of 0.23 and 0.29, respectively. At −30°C/0°C, a COP of 1.69 can be achieved.</p>","PeriodicalId":21612,"journal":{"name":"Science China Technological Sciences","volume":"31 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Technological Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11431-024-2649-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-performance automotive thermal management systems with environment-friendly refrigerants are essential for achieving carbon peaking and carbon neutrality goals. In this study, an R290 vapor-injection heat pump system for electric vehicles is developed and experimentally investigated. The effects of refrigerant charge mass, injection pressure, and in-cabin air temperature are analyzed in ambient temperatures from −30°C to 0°C. The results show that the vapor-injection system can increase the coefficient of performance (COP) and heating capacity by 14.3% and 15.9% at 0°C/20°C (ambient/in-cabin temperature) compared with the basic system, and this increase becomes more significant at −20°C/20°C with improvements of 32.5% and 38.1%, respectively. At a lower ambient temperature of −20°C, increasing refrigerant charge mass contributes to a more pronounced increase in heating capacity than at 0°C, which results from the more significant increase in injection mass flow. The optimal COP at various injection pressures are 2.07 and 1.63 at 0°C and −20°C ambient temperatures, corresponding to the relative injection pressures of 0.60 and 0.57, and the injection flow ratios of 0.23 and 0.29, respectively. At −30°C/0°C, a COP of 1.69 can be achieved.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
寒冷地区电动汽车用 R290 蒸汽喷射热泵系统的性能分析
使用环保制冷剂的高性能汽车热管理系统对于实现碳峰值和碳中和目标至关重要。本研究开发了一种用于电动汽车的 R290 蒸汽喷射热泵系统,并对其进行了实验研究。在环境温度为 -30°C 至 0°C 的条件下,分析了制冷剂充注质量、喷射压力和车内空气温度的影响。结果表明,与基本系统相比,在 0°C/20°C(环境温度/车内温度)条件下,喷气增焓系统的性能系数(COP)和制热能力分别提高了 14.3% 和 15.9%;在 -20°C/20°C 条件下,性能系数和制热能力的提高更为显著,分别提高了 32.5% 和 38.1%。在-20°C 的较低环境温度下,制冷剂充注质量的增加对制热能力的提高比 0°C 时更为明显,这是因为喷射质量流量的增加更为显著。在 0°C 和 -20°C 环境温度下,不同注入压力下的最佳 COP 分别为 2.07 和 1.63,对应的相对注入压力分别为 0.60 和 0.57,注入流量比分别为 0.23 和 0.29。在-30°C/0°C 时,COP 可达到 1.69。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Science China Technological Sciences
Science China Technological Sciences ENGINEERING, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.40
自引率
10.90%
发文量
4380
审稿时长
3.3 months
期刊介绍: Science China Technological Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Technological Sciences is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of technological sciences. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
A novel method for extracting and optimizing the complex permittivity of paper-based composites based on an artificial neural network model A systematic framework of constructing surrogate model for slider track peeling strength prediction Bridging the Fabry–Perot cavity and asymmetric Berreman mode for long-wave infrared nonreciprocal thermal emitters Unveiling the protective role of biofilm formation on the photoaging of microplastics Adhesive hydrogel interface for enhanced epidermal signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1