M. A. Usacheva, S. P. Smyshlyaev, E. V. Rozanov, B. A. Zubov
{"title":"Modeling Climate Changes and Atmospheric Ozone Variations from 1980 to 2020 Using the Chemistry-Climate Model SOCOLv3","authors":"M. A. Usacheva, S. P. Smyshlyaev, E. V. Rozanov, B. A. Zubov","doi":"10.1134/S1024856024700519","DOIUrl":null,"url":null,"abstract":"<p>To assess the relative contribution of key chemical and physical processes to the observed variability in climate and atmospheric gas composition from the 1980s to the 2020s, numerical experiments were conducted using the chemical-climatic model SOCOLv3. The study investigated factors determining the variability of principal climatic characteristics, including changes in the concentrations of ozone-depleting substances; variations in greenhouse gas concentrations, sea surface temperature, and sea ice extent; fluctuations in solar activity; and alterations in atmospheric aerosol content. Calculations for scenarios considering each of these factors individually, as well as a baseline model experiment accounting for all factors concurrently, were performed to evaluate the relative roles of these factors. The outcomes of the numerical experiments determined the relative contributions of different factors to changes in tropospheric temperature, lower stratospheric temperature, and ozone content from 1980 to 2020. The results of the model calculations were then compared with data from SBUV satellite measurements.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
To assess the relative contribution of key chemical and physical processes to the observed variability in climate and atmospheric gas composition from the 1980s to the 2020s, numerical experiments were conducted using the chemical-climatic model SOCOLv3. The study investigated factors determining the variability of principal climatic characteristics, including changes in the concentrations of ozone-depleting substances; variations in greenhouse gas concentrations, sea surface temperature, and sea ice extent; fluctuations in solar activity; and alterations in atmospheric aerosol content. Calculations for scenarios considering each of these factors individually, as well as a baseline model experiment accounting for all factors concurrently, were performed to evaluate the relative roles of these factors. The outcomes of the numerical experiments determined the relative contributions of different factors to changes in tropospheric temperature, lower stratospheric temperature, and ozone content from 1980 to 2020. The results of the model calculations were then compared with data from SBUV satellite measurements.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.