{"title":"A neural network for the analysis of Langmuir-probe characteristics","authors":"Jasmin Joshi-Thompson, Mirko Ramisch","doi":"10.1088/1361-6587/ad7289","DOIUrl":null,"url":null,"abstract":"Langmuir probes have been widely used in the field of plasma diagnostics for the characterisation of plasma properties. These probes play a crucial role in understanding the behaviour of a diverse range of plasmas, e.g. edge plasmas in fusion experiments. The measurement of electron density (<italic toggle=\"yes\">n<sub>e</sub></italic>) and electron temperature (<italic toggle=\"yes\">T<sub>e</sub></italic>) provides valuable insights into the plasma’s state, stability, and confinement properties. Conventionally, this analysis involves post-experiment fitting methods to calculate plasma properties from the measured current–voltage curves obtained from Langmuir probes. This work introduces a neural-network approach for analysing probe data from the TJ-K stellarator, allowing for fast associative plasma characterisation. The results show a reliable performance on test data within the domain of the training set, predicting both <italic toggle=\"yes\">n<sub>e</sub></italic> and <italic toggle=\"yes\">T<sub>e</sub></italic> within the 10 % intrinsic error. Performance on unseen data outside the domain of the training set was on average within a 26 % and 21 % error on <italic toggle=\"yes\">n<sub>e</sub></italic> and <italic toggle=\"yes\">T<sub>e</sub></italic>, respectively. The network’s further abilities, including the identification of low-quality and falsely-labelled data, were also explored. The use of neural networks (NNs) offers fast predictions, enabling further research into real-time applications and live feedback control. This paper highlights the promising role of NNs in enhancing the analysis of Langmuir-probe characteristics.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"9 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad7289","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Langmuir probes have been widely used in the field of plasma diagnostics for the characterisation of plasma properties. These probes play a crucial role in understanding the behaviour of a diverse range of plasmas, e.g. edge plasmas in fusion experiments. The measurement of electron density (ne) and electron temperature (Te) provides valuable insights into the plasma’s state, stability, and confinement properties. Conventionally, this analysis involves post-experiment fitting methods to calculate plasma properties from the measured current–voltage curves obtained from Langmuir probes. This work introduces a neural-network approach for analysing probe data from the TJ-K stellarator, allowing for fast associative plasma characterisation. The results show a reliable performance on test data within the domain of the training set, predicting both ne and Te within the 10 % intrinsic error. Performance on unseen data outside the domain of the training set was on average within a 26 % and 21 % error on ne and Te, respectively. The network’s further abilities, including the identification of low-quality and falsely-labelled data, were also explored. The use of neural networks (NNs) offers fast predictions, enabling further research into real-time applications and live feedback control. This paper highlights the promising role of NNs in enhancing the analysis of Langmuir-probe characteristics.
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.