Xufeng Peng, Yongjian Xu, Yahong Xie, Jianglong Wei, Yufan Li, Yuwen Yang, Bo Liu, Junwei Xie, Bin Wu
{"title":"Experimental study on plasma characteristics in the extraction region of a high-power RF negative ion source based on electrostatic probe","authors":"Xufeng Peng, Yongjian Xu, Yahong Xie, Jianglong Wei, Yufan Li, Yuwen Yang, Bo Liu, Junwei Xie, Bin Wu","doi":"10.1088/1361-6587/ad705b","DOIUrl":null,"url":null,"abstract":"The plasma characteristics of the extraction region in high-power RF negative ion source have a significant impact on the production and extraction of negative hydrogen ions. This study utilized electrostatic probe to investigate the effect of RF power, source pressure, magnetic filter field and bias voltage on the plasma parameters of the extraction region (without cesium), and also studied the variation of plasma parameters with position and time. The results indicate that as RF power increases, the plasma density in the extraction region significantly rises, but it also leads to an increase in the electron temperature (<inline-formula>\n<tex-math><?CDATA ${T_{\\text{e}}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad705bieqn1.gif\"></inline-graphic></inline-formula>) of the extraction region (which increases the loss of negative hydrogen ions); increasing the source pressure can effectively increase the electron density (<inline-formula>\n<tex-math><?CDATA ${N_{\\text{e}}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>N</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad705bieqn2.gif\"></inline-graphic></inline-formula>) in the extraction region and reduce <inline-formula>\n<tex-math><?CDATA ${T_{\\text{e}}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad705bieqn3.gif\"></inline-graphic></inline-formula> as expected; increasing the magnetic filter field can effectively reduce the <inline-formula>\n<tex-math><?CDATA ${T_{\\text{e}}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad705bieqn4.gif\"></inline-graphic></inline-formula> in the extraction region, but after the plasma grid current exceeds 1900 A, the change in <inline-formula>\n<tex-math><?CDATA ${T_{\\text{e}}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad705bieqn5.gif\"></inline-graphic></inline-formula> is not significant; although increasement of the bias voltage can effectively suppress the <inline-formula>\n<tex-math><?CDATA ${N_{\\text{e}}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>N</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad705bieqn6.gif\"></inline-graphic></inline-formula> in the extraction region, it causes <inline-formula>\n<tex-math><?CDATA ${T_{\\text{e}}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mrow><mml:mtext>e</mml:mtext></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad705bieqn7.gif\"></inline-graphic></inline-formula> to rise; moreover, the distribution of plasma parameters in the extraction region is relatively uniform; in addition, the variation of plasma parameters with time is not obvious. These findings not only deepen the understanding of the physical mechanisms of plasma behavior in the extraction region of negative ion sources, but also provide important theoretical and experimental bases for the optimization of high-power RF negative ion sources.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"17 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad705b","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
The plasma characteristics of the extraction region in high-power RF negative ion source have a significant impact on the production and extraction of negative hydrogen ions. This study utilized electrostatic probe to investigate the effect of RF power, source pressure, magnetic filter field and bias voltage on the plasma parameters of the extraction region (without cesium), and also studied the variation of plasma parameters with position and time. The results indicate that as RF power increases, the plasma density in the extraction region significantly rises, but it also leads to an increase in the electron temperature (Te) of the extraction region (which increases the loss of negative hydrogen ions); increasing the source pressure can effectively increase the electron density (Ne) in the extraction region and reduce Te as expected; increasing the magnetic filter field can effectively reduce the Te in the extraction region, but after the plasma grid current exceeds 1900 A, the change in Te is not significant; although increasement of the bias voltage can effectively suppress the Ne in the extraction region, it causes Te to rise; moreover, the distribution of plasma parameters in the extraction region is relatively uniform; in addition, the variation of plasma parameters with time is not obvious. These findings not only deepen the understanding of the physical mechanisms of plasma behavior in the extraction region of negative ion sources, but also provide important theoretical and experimental bases for the optimization of high-power RF negative ion sources.
大功率射频负离子源萃取区的等离子体特性对负氢离子的产生和萃取有重要影响。本研究利用静电探针研究了射频功率、源压力、磁滤波场和偏置电压对萃取区(不含铯)等离子体参数的影响,并研究了等离子体参数随位置和时间的变化。结果表明,随着射频功率的增加,萃取区的等离子体密度会显著提高,但同时也会导致萃取区电子温度(Te)的升高(增加了负氢离子的损失);增加源压力可以有效提高萃取区的电子密度(Ne),并降低 Te;增加磁滤波器磁场可以有效降低萃取区的 Te,但在等离子体栅电流超过 1900 A 后,Te 的变化并不显著;虽然增加偏置电压可以有效抑制萃取区的 Ne,但却会导致 Te 上升;此外,萃取区的等离子体参数分布相对均匀;而且等离子体参数随时间的变化并不明显。这些发现不仅加深了对负离子源萃取区等离子体行为物理机制的理解,也为大功率射频负离子源的优化提供了重要的理论和实验依据。
期刊介绍:
Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods.
Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.