Cross-Institutional European Evaluation and Validation of Automated Multilabel Segmentation for Acute Intracerebral Hemorrhage and Complications

Jawed Nawabi, Georg Lukas Baumgaertner, Sophia Schulze-Weddige, Andrea Dell'Orco, Andrea Morotti, Federico Mazzacane, Helge C Kniep, Frieder Schlunk, Maik FH Boehmer, Burakhan Akkurt, Tobias Orth, Jana-Sofie Weissflog, Maik Schumann, Peter Sporns, Michael Scheel, Uta Hanning, Jens Fiehler, Tobias Penzkofer
{"title":"Cross-Institutional European Evaluation and Validation of Automated Multilabel Segmentation for Acute Intracerebral Hemorrhage and Complications","authors":"Jawed Nawabi, Georg Lukas Baumgaertner, Sophia Schulze-Weddige, Andrea Dell'Orco, Andrea Morotti, Federico Mazzacane, Helge C Kniep, Frieder Schlunk, Maik FH Boehmer, Burakhan Akkurt, Tobias Orth, Jana-Sofie Weissflog, Maik Schumann, Peter Sporns, Michael Scheel, Uta Hanning, Jens Fiehler, Tobias Penzkofer","doi":"10.1101/2024.08.27.24312653","DOIUrl":null,"url":null,"abstract":"Purpose: To evaluate a nnU-Net-based deep learning for automated segmentation of intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and perihematomal edema (PHE) on noncontrast CT scans. Materials and Methods: Retrospective data from acute ICH patients admitted at four European stroke centers (2017-2019), along healthy controls (2022-2023), were analyzed. nnU-Net was trained (n=775) using a 5-fold cross-valiadtion approach, tested (n=189), and seperatly validated on internal (n=121), external (n=169), and diverse ICH etiologies (n=175) datasets. Interrater-validated ground truth served as the reference standard. Lesion detection, segmentation, and volumetric accuracy were measured, alongside time efficiency versus manual segmentation. Results: Test set results revealed high nnU-Net accuracy (median Dice Similartiy Coefficient (DSC): ICH 0.91, IVH 0.76, PHE 0.71) and volumetric correlation (ICH, IVH: r=0.99; PHE: r=0.92). Sensitivities were high (ICH, PHE: 99%; IVH: 97%), with IVH detection specificities and sensitivities >90% for volumes up to 0.2 ml. Anatomical-specific metrics showed higher performance for lobar and deep hemorrhages (median DSC 0.90 and 0.92, respectively) and lower for brainstem (median DSC 0.70). Concurrent hemorrhages did not affect accuracy, p> 0.05. Across validation sets, segmentation precision was consistent, especially for ICH (median DSC 0.85-0.90), with PHE slightly lower (median DSC 0.61-0.66) and IVH best in the second and third set (median DSC 0.80). Average processing time was 18.2 seconds versus 18.01 minutes manually. Conclusion: The nnU-Net provides reliable, time-efficient ICH, IVH, and PHE segmentation, validated across various clinical settings, with excellent anatomical-specific performance for lobar and deep hemorrhages. It shows promise for enhancing clinical workflow and research initiatives.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.27.24312653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To evaluate a nnU-Net-based deep learning for automated segmentation of intracerebral hemorrhage (ICH), intraventricular hemorrhage (IVH), and perihematomal edema (PHE) on noncontrast CT scans. Materials and Methods: Retrospective data from acute ICH patients admitted at four European stroke centers (2017-2019), along healthy controls (2022-2023), were analyzed. nnU-Net was trained (n=775) using a 5-fold cross-valiadtion approach, tested (n=189), and seperatly validated on internal (n=121), external (n=169), and diverse ICH etiologies (n=175) datasets. Interrater-validated ground truth served as the reference standard. Lesion detection, segmentation, and volumetric accuracy were measured, alongside time efficiency versus manual segmentation. Results: Test set results revealed high nnU-Net accuracy (median Dice Similartiy Coefficient (DSC): ICH 0.91, IVH 0.76, PHE 0.71) and volumetric correlation (ICH, IVH: r=0.99; PHE: r=0.92). Sensitivities were high (ICH, PHE: 99%; IVH: 97%), with IVH detection specificities and sensitivities >90% for volumes up to 0.2 ml. Anatomical-specific metrics showed higher performance for lobar and deep hemorrhages (median DSC 0.90 and 0.92, respectively) and lower for brainstem (median DSC 0.70). Concurrent hemorrhages did not affect accuracy, p> 0.05. Across validation sets, segmentation precision was consistent, especially for ICH (median DSC 0.85-0.90), with PHE slightly lower (median DSC 0.61-0.66) and IVH best in the second and third set (median DSC 0.80). Average processing time was 18.2 seconds versus 18.01 minutes manually. Conclusion: The nnU-Net provides reliable, time-efficient ICH, IVH, and PHE segmentation, validated across various clinical settings, with excellent anatomical-specific performance for lobar and deep hemorrhages. It shows promise for enhancing clinical workflow and research initiatives.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
欧洲跨机构评估和验证急性脑内出血及并发症的自动多标签分割技术
目的:评估基于 nnU-Net 的深度学习在非对比 CT 扫描上对脑内出血 (ICH)、脑室内出血 (IVH) 和脑室周围水肿 (PHE) 的自动分割。材料与方法:nnU-Net 采用 5 倍交叉估值法进行训练(n=775)、测试(n=189),并分别在内部(n=121)、外部(n=169)和不同 ICH 病因(n=175)数据集上进行验证。经相互验证的基本真实数据作为参考标准。对病灶检测、分割和容积准确性进行了测量,同时还测量了与人工分割相比的时间效率。结果显示测试集结果显示 nnU-Net 的准确率很高(Dice Similartiy Coefficient (DSC) 中位数:ICH 0.91,IVH 0.91,IVH 0.91):ICH:0.91;IVH:0.76;PHE:0.71)和容积相关性(ICH、IVH:r=0.99;PHE:r=0.92)。灵敏度很高(ICH、PHE:99%;IVH:97%),IVH 检测特异性和灵敏度>90%,容积不超过 0.2 毫升。解剖特异性指标显示,脑叶和深部出血的性能较高(DSC 中位数分别为 0.90 和 0.92),而脑干出血的性能较低(DSC 中位数为 0.70)。并发出血不影响准确性,p> 0.05。在各验证组中,分割精度是一致的,尤其是 ICH(中位数 DSC 0.85-0.90),PHE 稍低(中位数 DSC 0.61-0.66),IVH 在第二和第三组中最好(中位数 DSC 0.80)。平均处理时间为 18.2 秒,而人工处理时间为 18.01 分钟。结论nnU-Net 可提供可靠、省时的 ICH、IVH 和 PHE 分割,并在各种临床环境中得到验证,对叶状出血和深部出血具有出色的解剖特异性。它有望加强临床工作流程和研究计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome Dynamic MR of muscle contraction during electrical muscle stimulation as a potential diagnostic tool for neuromuscular disease Deriving Imaging Biomarkers for Primary Central Nervous System Lymphoma Using Deep Learning Exploring subthreshold functional network alterations in women with phenylketonuria by higher criticism Beyond Algorithms: The Impact of Simplified CNN Models and Multifactorial Influences on Radiological Image Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1