Thalamus normalisation improves detectability of hypoperfusion via arterial spin labelling in an Alzheimer's disease cohort

Logan X Zhang, Thomas F Kirk, Martin S Craig, Michael A Chappell
{"title":"Thalamus normalisation improves detectability of hypoperfusion via arterial spin labelling in an Alzheimer's disease cohort","authors":"Logan X Zhang, Thomas F Kirk, Martin S Craig, Michael A Chappell","doi":"10.1101/2024.08.13.24311671","DOIUrl":null,"url":null,"abstract":"Data normalisation is an important approach to reduce inter-subject variability in group studies, but care must be taken when choosing a normalisation strategy to not introduce further confounds or artefacts into the data. Normalisation of arterial spin labelling perfusion measurements remains challenging, especially in the context of Alzheimer's disease, where there may be global hypoperfusion present. We propose that using the thalamus as a reference region for normalisation could improve the detectability of hypoperfusion in Alzheimer's disease and alleviate the pseudo-hyperperfusion artefacts caused by the commonly-used strategy of normalisation using global mean perfusion. Evaluation on an Alzheimer's disease dataset found this strategy was able to reduce coefficient of variation in perfusion measurements by around 60% and yield increases in statistical power of comparisons against healthy controls.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.13.24311671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data normalisation is an important approach to reduce inter-subject variability in group studies, but care must be taken when choosing a normalisation strategy to not introduce further confounds or artefacts into the data. Normalisation of arterial spin labelling perfusion measurements remains challenging, especially in the context of Alzheimer's disease, where there may be global hypoperfusion present. We propose that using the thalamus as a reference region for normalisation could improve the detectability of hypoperfusion in Alzheimer's disease and alleviate the pseudo-hyperperfusion artefacts caused by the commonly-used strategy of normalisation using global mean perfusion. Evaluation on an Alzheimer's disease dataset found this strategy was able to reduce coefficient of variation in perfusion measurements by around 60% and yield increases in statistical power of comparisons against healthy controls.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
丘脑正常化提高了阿尔茨海默病队列中通过动脉自旋标记检测灌注不足的能力
数据归一化是减少群体研究中受试者间变异性的重要方法,但在选择归一化策略时必须小心谨慎,以免在数据中引入更多干扰或伪影。动脉自旋标记灌注测量的归一化仍然具有挑战性,尤其是在阿尔茨海默病的情况下,因为该病可能存在整体灌注不足。我们建议将丘脑作为归一化的参考区域,这样可以提高阿尔茨海默病低灌注的可探测性,并减轻常用的使用全局平均灌注进行归一化的策略所造成的假性高灌注伪影。对阿尔茨海默病数据集的评估发现,这种策略能将灌注测量的变异系数降低约 60%,并提高与健康对照组比较的统计能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome Dynamic MR of muscle contraction during electrical muscle stimulation as a potential diagnostic tool for neuromuscular disease Deriving Imaging Biomarkers for Primary Central Nervous System Lymphoma Using Deep Learning Exploring subthreshold functional network alterations in women with phenylketonuria by higher criticism Beyond Algorithms: The Impact of Simplified CNN Models and Multifactorial Influences on Radiological Image Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1