{"title":"Toward precise dense 3D reconstruction of indoor hallway: a confidence-based panoramic LiDAR point cloud fusion approach","authors":"Hongtai Cheng, Jiayi Han","doi":"10.1108/ir-03-2024-0132","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>Indoor hallways are the most common and indispensable part of people’s daily life, commercial and industrial activities. This paper aims to achieve high-precision and dense 3D reconstruction of the narrow and long indoor hallway and proposes a 3D, dense 3D reconstruction, indoor hallway, rotating LiDAR reconstruction system based on rotating LiDAR.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This paper develops an orthogonal biaxial rotating LiDAR sensing device for low texture and narrow structures in hallways, which can capture panoramic point clouds containing rich features. A discrete interval scanning method is proposed considering the characteristics of the indoor hallway environment and rotating LiDAR. Considering the error model of LiDAR, this paper proposes a confidence-based point cloud fusion method to improve reconstruction accuracy.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>In two different indoor hallway environments, the 3D reconstruction system proposed in this paper can obtain high-precision and dense reconstruction models. Meanwhile, the confidence-based point cloud fusion algorithm has been proven to improve the accuracy of 3D reconstruction.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>A 3D reconstruction system was designed to obtain a high-precision and dense indoor hallway environment model. A discrete interval scanning method suitable for rotating LiDAR and hallway environments was proposed. A confidence-based point cloud fusion algorithm was designed to improve the accuracy of LiDAR 3D reconstruction. The entire system showed satisfactory performance in experiments.</p><!--/ Abstract__block -->","PeriodicalId":501389,"journal":{"name":"Industrial Robot","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ir-03-2024-0132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Indoor hallways are the most common and indispensable part of people’s daily life, commercial and industrial activities. This paper aims to achieve high-precision and dense 3D reconstruction of the narrow and long indoor hallway and proposes a 3D, dense 3D reconstruction, indoor hallway, rotating LiDAR reconstruction system based on rotating LiDAR.
Design/methodology/approach
This paper develops an orthogonal biaxial rotating LiDAR sensing device for low texture and narrow structures in hallways, which can capture panoramic point clouds containing rich features. A discrete interval scanning method is proposed considering the characteristics of the indoor hallway environment and rotating LiDAR. Considering the error model of LiDAR, this paper proposes a confidence-based point cloud fusion method to improve reconstruction accuracy.
Findings
In two different indoor hallway environments, the 3D reconstruction system proposed in this paper can obtain high-precision and dense reconstruction models. Meanwhile, the confidence-based point cloud fusion algorithm has been proven to improve the accuracy of 3D reconstruction.
Originality/value
A 3D reconstruction system was designed to obtain a high-precision and dense indoor hallway environment model. A discrete interval scanning method suitable for rotating LiDAR and hallway environments was proposed. A confidence-based point cloud fusion algorithm was designed to improve the accuracy of LiDAR 3D reconstruction. The entire system showed satisfactory performance in experiments.