A Deixis-Centered Approach for Documenting Remote Synchronous Communication Around Data Visualizations

Chang Han;Katherine E. Isaacs
{"title":"A Deixis-Centered Approach for Documenting Remote Synchronous Communication Around Data Visualizations","authors":"Chang Han;Katherine E. Isaacs","doi":"10.1109/TVCG.2024.3456351","DOIUrl":null,"url":null,"abstract":"Referential gestures, or as termed in linguistics, deixis, are an essential part of communication around data visualizations. Despite their importance, such gestures are often overlooked when documenting data analysis meetings. Transcripts, for instance, fail to capture gestures, and video recordings may not adequately capture or emphasize them. We introduce a novel method for documenting collaborative data meetings that treats deixis as a first-class citizen. Our proposed framework captures cursor-based gestural data along with audio and converts them into interactive documents. The framework leverages a large language model to identify word correspondences with gestures. These identified references are used to create context-based annotations in the resulting interactive document. We assess the effectiveness of our proposed method through a user study, finding that participants preferred our automated interactive documentation over recordings, transcripts, and manual note-taking. Furthermore, we derive a preliminary taxonomy of cursor-based deictic gestures from participant actions during the study. This taxonomy offers further opportunities for better utilizing cursor-based deixis in collaborative data analysis scenarios.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"930-940"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670510/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Referential gestures, or as termed in linguistics, deixis, are an essential part of communication around data visualizations. Despite their importance, such gestures are often overlooked when documenting data analysis meetings. Transcripts, for instance, fail to capture gestures, and video recordings may not adequately capture or emphasize them. We introduce a novel method for documenting collaborative data meetings that treats deixis as a first-class citizen. Our proposed framework captures cursor-based gestural data along with audio and converts them into interactive documents. The framework leverages a large language model to identify word correspondences with gestures. These identified references are used to create context-based annotations in the resulting interactive document. We assess the effectiveness of our proposed method through a user study, finding that participants preferred our automated interactive documentation over recordings, transcripts, and manual note-taking. Furthermore, we derive a preliminary taxonomy of cursor-based deictic gestures from participant actions during the study. This taxonomy offers further opportunities for better utilizing cursor-based deixis in collaborative data analysis scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以 Deixis 为中心的数据可视化远程同步通信记录方法
参考手势,或在语言学中称为 "deixis",是数据可视化交流的重要组成部分。尽管这些手势非常重要,但在记录数据分析会议时却经常被忽视。例如,文字记录无法捕捉手势,视频记录也可能无法充分捕捉或强调手势。我们介绍了一种记录协作数据会议的新方法,该方法将deixis视为一等公民。我们提出的框架可以捕捉基于光标的手势数据和音频,并将其转换为交互式文档。该框架利用大型语言模型来识别单词与手势的对应关系。这些已识别的参考信息用于在生成的交互式文档中创建基于上下文的注释。我们通过一项用户研究评估了我们提出的方法的有效性,结果发现,与录音、记录誊本和手工笔记相比,参与者更喜欢我们的自动交互式文档。此外,我们还从研究过程中参与者的操作中得出了基于光标的指代手势的初步分类法。该分类法为在协作数据分析场景中更好地利用基于光标的指代手势提供了更多机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 VGTC Visualization Lifetime Achievement Award Investigating the Potential of Haptic Props for 3D Object Manipulation in Handheld AR. Visualization-Driven Illumination for Density Plots. "where Did My Apps Go?" Supporting Scalable and Transition-Aware Access to Everyday Applications in Head-Worn Augmented Reality. PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1