Promises and Pitfalls: Using Large Language Models to Generate Visualization Items

Yuan Cui;Lily W. Ge;Yiren Ding;Lane Harrison;Fumeng Yang;Matthew Kay
{"title":"Promises and Pitfalls: Using Large Language Models to Generate Visualization Items","authors":"Yuan Cui;Lily W. Ge;Yiren Ding;Lane Harrison;Fumeng Yang;Matthew Kay","doi":"10.1109/TVCG.2024.3456309","DOIUrl":null,"url":null,"abstract":"Visualization items—factual questions about visualizations that ask viewers to accomplish visualization tasks-are regularly used in the field of information visualization as educational and evaluative materials. For example, researchers of visualization literacy require large, diverse banks of items to conduct studies where the same skill is measured repeatedly on the same participants. Yet, generating a large number of high-quality, diverse items requires significant time and expertise. To address the critical need for a large number of diverse visualization items in education and research, this paper investigates the potential for large language models (LLMS) to automate the generation of multiple-choice visualization items. Through an iterative design process, we develop the VILA (Visualization Items Generated by Large LAnguage Models) pipeline, for efficiently generating visualization items that measure people's ability to accomplish visualization tasks. We use the VILA pipeline to generate 1,404 candidate items across 12 chart types and 13 visualization tasks. In collaboration with 11 visualization experts, we develop an evaluation rulebook which we then use to rate the quality of all candidate items. The result is the VILA bank of ~1, 100 items. From this evaluation, we also identify and classify current limitations of the VILA pipeline, and discuss the role of human oversight in ensuring quality. In addition, we demonstrate an application of our work by creating a visualization literacy test, VILA-VLAT, which measures people's ability to complete a diverse set of tasks on various types of visualizations; comparing it to the existing VLAT, VILA-VLAT shows moderate to high convergent validity (R = 0.70). Lastly, we discuss the application areas of the VILA pipeline and the VILA bank and provide practical recommendations for their use. All supplemental materials are available at https://osf.io/ysrhq/.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"1094-1104"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670418/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visualization items—factual questions about visualizations that ask viewers to accomplish visualization tasks-are regularly used in the field of information visualization as educational and evaluative materials. For example, researchers of visualization literacy require large, diverse banks of items to conduct studies where the same skill is measured repeatedly on the same participants. Yet, generating a large number of high-quality, diverse items requires significant time and expertise. To address the critical need for a large number of diverse visualization items in education and research, this paper investigates the potential for large language models (LLMS) to automate the generation of multiple-choice visualization items. Through an iterative design process, we develop the VILA (Visualization Items Generated by Large LAnguage Models) pipeline, for efficiently generating visualization items that measure people's ability to accomplish visualization tasks. We use the VILA pipeline to generate 1,404 candidate items across 12 chart types and 13 visualization tasks. In collaboration with 11 visualization experts, we develop an evaluation rulebook which we then use to rate the quality of all candidate items. The result is the VILA bank of ~1, 100 items. From this evaluation, we also identify and classify current limitations of the VILA pipeline, and discuss the role of human oversight in ensuring quality. In addition, we demonstrate an application of our work by creating a visualization literacy test, VILA-VLAT, which measures people's ability to complete a diverse set of tasks on various types of visualizations; comparing it to the existing VLAT, VILA-VLAT shows moderate to high convergent validity (R = 0.70). Lastly, we discuss the application areas of the VILA pipeline and the VILA bank and provide practical recommendations for their use. All supplemental materials are available at https://osf.io/ysrhq/.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
承诺与陷阱:使用大型语言模型生成可视化项目
可视化项目--要求观众完成可视化任务的可视化事实问题--在信息可视化领域经常被用作教育和评估材料。例如,可视化素养研究人员需要大量不同的项目库来进行研究,以便在相同的参与者身上重复测量相同的技能。然而,生成大量高质量、多样化的项目需要大量的时间和专业知识。为了满足教育和研究对大量多样化可视化项目的迫切需求,本文研究了大语言模型(LLMS)自动生成多项选择可视化项目的潜力。通过迭代设计过程,我们开发了VILA(由大型语言模型生成的可视化项目)管道,用于高效生成可视化项目,以衡量人们完成可视化任务的能力。我们使用 VILA 管道生成了 1,404 个候选项目,涵盖 12 种图表类型和 13 项可视化任务。我们与 11 位可视化专家合作开发了一个评估规则手册,然后利用该手册对所有候选项目的质量进行评级。最终,我们建立了由约 1,100 个项目组成的 VILA 库。通过此次评估,我们还发现了 VILA 流程目前存在的局限性并对其进行了分类,同时还讨论了人工监督在确保质量方面的作用。此外,我们还通过创建可视化素养测试 VILA-VLAT 展示了我们工作的一个应用领域,该测试可测量人们在各种类型的可视化作品上完成各种任务的能力;与现有的 VLAT 相比,VILA-VLAT 显示出中度到高度的收敛有效性(R = 0.70)。最后,我们讨论了 VILA 管道和 VILA 库的应用领域,并为它们的使用提供了实用建议。所有补充材料均可在 https://osf.io/ysrhq/ 上查阅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 Reviewers List Errata to “DiffFit: Visually-Guided Differentiable Fitting of Molecule Structures to a Cryo-EM Map” The Census-Stub Graph Invariant Descriptor TimeLighting: Guided Exploration of 2D Temporal Network Projections Preface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1