Expressive 3D Facial Animation Generation Based on Local-to-Global Latent Diffusion

Wenfeng Song;Xuan Wang;Yiming Jiang;Shuai Li;Aimin Hao;Xia Hou;Hong Qin
{"title":"Expressive 3D Facial Animation Generation Based on Local-to-Global Latent Diffusion","authors":"Wenfeng Song;Xuan Wang;Yiming Jiang;Shuai Li;Aimin Hao;Xia Hou;Hong Qin","doi":"10.1109/TVCG.2024.3456213","DOIUrl":null,"url":null,"abstract":"3D Facial animations, crucial to augmented and mixed reality digital media, have evolved from mere aesthetic elements to potent storytelling media. Despite considerable progress in facial animation of neutral emotions, existing methods still struggle to capture the authenticity of emotions. This paper introduces a novel approach to capture fine facial expressions and generate facial animations using audio synchronization. Our method consists of two key components: First, the Local-to-global Latent Diffusion Model (LG-LDM) tailored for authentic facial expressions, which can integrate audio, time step, facial expressions, and other conditions towards possible encoding of emotionally rich yet latent features in response to possibly noisy raw audio signals. The core of LG-LDM is our carefully designed Facial Denoiser Model (FDM) for aligning the local-to-global animation feature with audio. Second, we redesign an Emotion-centric Vector Quantized-Variational AutoEncoder framework (EVQ-VAE) to finely decode the subtle differences under different emotions and reconstruct the final 3D facial geometry. Our work significantly contributes to the key challenges of emotionally realistic 3D facial animation for audio synchronization and enhances the immersive experience and emotional depth in augmented and mixed reality applications. We provide a reproducibility kit including our code, dataset, and detailed instructions for running the experiments. This kit is available at https://github.com/wangxuanx/Face-Diffusion-Model.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"30 11","pages":"7397-7407"},"PeriodicalIF":6.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670569/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

3D Facial animations, crucial to augmented and mixed reality digital media, have evolved from mere aesthetic elements to potent storytelling media. Despite considerable progress in facial animation of neutral emotions, existing methods still struggle to capture the authenticity of emotions. This paper introduces a novel approach to capture fine facial expressions and generate facial animations using audio synchronization. Our method consists of two key components: First, the Local-to-global Latent Diffusion Model (LG-LDM) tailored for authentic facial expressions, which can integrate audio, time step, facial expressions, and other conditions towards possible encoding of emotionally rich yet latent features in response to possibly noisy raw audio signals. The core of LG-LDM is our carefully designed Facial Denoiser Model (FDM) for aligning the local-to-global animation feature with audio. Second, we redesign an Emotion-centric Vector Quantized-Variational AutoEncoder framework (EVQ-VAE) to finely decode the subtle differences under different emotions and reconstruct the final 3D facial geometry. Our work significantly contributes to the key challenges of emotionally realistic 3D facial animation for audio synchronization and enhances the immersive experience and emotional depth in augmented and mixed reality applications. We provide a reproducibility kit including our code, dataset, and detailed instructions for running the experiments. This kit is available at https://github.com/wangxuanx/Face-Diffusion-Model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于局部到全局潜在扩散的富有表现力的三维面部动画生成
三维面部动画对增强现实和混合现实数字媒体至关重要,它已从单纯的美学元素发展成为强有力的叙事媒体。尽管在中性情绪的面部动画制作方面取得了长足进步,但现有方法仍难以捕捉到真实的情绪。本文介绍了一种利用音频同步捕捉精细面部表情并生成面部动画的新方法。我们的方法由两个关键部分组成:首先是为真实面部表情量身定制的本地到全局潜特征扩散模型(LG-LDM),该模型可以整合音频、时间步长、面部表情和其他条件,从而针对可能存在噪声的原始音频信号编码丰富的情感潜特征。LG-LDM 的核心是我们精心设计的面部去噪器模型(FDM),用于将局部到全局的动画特征与音频相一致。其次,我们重新设计了以情绪为中心的矢量量化变量自动编码器框架(EVQ-VAE),以精细解码不同情绪下的细微差别,并重建最终的三维面部几何图形。我们的工作极大地推动了情感逼真三维面部动画音频同步的关键挑战,并增强了增强现实和混合现实应用中的沉浸式体验和情感深度。我们提供了一个可重现性工具包,其中包括我们的代码、数据集和运行实验的详细说明。该工具包可在 https://github.com/wangxuanx/Face-Diffusion-Model 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DynAvatar: Dynamic 3D Head Avatar Deformation With Expression Guided Gaussian Splatting. Understanding the Research-Practice Gap in Visualization Design Guidelines. QuRAFT: Enhancing Quantum Algorithm Design by Visual Linking Between Mathematical Concepts and Quantum Circuits. DanceAgent: Dance Movement Refinement With LLM Agent. Do You "Trust" This Visualization? An Inventory to Measure Trust in Visualizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1