Blowing Seeds Across Gardens: Visualizing Implicit Propagation of Cross-Platform Social Media Posts

Jianing Yin;Hanze Jia;Buwei Zhou;Tan Tang;Lu Ying;Shuainan Ye;Tai-Quan Peng;Yingcai Wu
{"title":"Blowing Seeds Across Gardens: Visualizing Implicit Propagation of Cross-Platform Social Media Posts","authors":"Jianing Yin;Hanze Jia;Buwei Zhou;Tan Tang;Lu Ying;Shuainan Ye;Tai-Quan Peng;Yingcai Wu","doi":"10.1109/TVCG.2024.3456181","DOIUrl":null,"url":null,"abstract":"Propagation analysis refers to studying how information spreads on social media, a pivotal endeavor for understanding social sentiment and public opinions. Numerous studies contribute to visualizing information spread, but few have considered the implicit and complex diffusion patterns among multiple platforms. To bridge the gap, we summarize cross-platform diffusion patterns with experts and identify significant factors that dissect the mechanisms of cross-platform information spread. Based on that, we propose an information diffusion model that estimates the likelihood of a topic/post spreading among different social media platforms. Moreover, we propose a novel visual metaphor that encapsulates cross-platform propagation in a manner analogous to the spread of seeds across gardens. Specifically, we visualize platforms, posts, implicit cross-platform routes, and salient instances as elements of a virtual ecosystem — gardens, flowers, winds, and seeds, respectively. We further develop a visual analytic system, namely BloomWind, that enables users to quickly identify the cross-platform diffusion patterns and investigate the relevant social media posts. Ultimately, we demonstrate the usage of BloomWind through two case studies and validate its effectiveness using expert interviews.","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"31 1","pages":"185-195"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10670503/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Propagation analysis refers to studying how information spreads on social media, a pivotal endeavor for understanding social sentiment and public opinions. Numerous studies contribute to visualizing information spread, but few have considered the implicit and complex diffusion patterns among multiple platforms. To bridge the gap, we summarize cross-platform diffusion patterns with experts and identify significant factors that dissect the mechanisms of cross-platform information spread. Based on that, we propose an information diffusion model that estimates the likelihood of a topic/post spreading among different social media platforms. Moreover, we propose a novel visual metaphor that encapsulates cross-platform propagation in a manner analogous to the spread of seeds across gardens. Specifically, we visualize platforms, posts, implicit cross-platform routes, and salient instances as elements of a virtual ecosystem — gardens, flowers, winds, and seeds, respectively. We further develop a visual analytic system, namely BloomWind, that enables users to quickly identify the cross-platform diffusion patterns and investigate the relevant social media posts. Ultimately, we demonstrate the usage of BloomWind through two case studies and validate its effectiveness using expert interviews.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在花园里播撒种子:可视化跨平台社交媒体帖子的隐性传播
传播分析是指研究信息如何在社交媒体上传播,这是了解社会情绪和公众意见的一项关键工作。大量研究有助于实现信息传播的可视化,但很少有研究考虑到多个平台之间隐含而复杂的传播模式。为了弥补这一空白,我们与专家一起总结了跨平台传播模式,并找出了剖析跨平台信息传播机制的重要因素。在此基础上,我们提出了一个信息扩散模型,用于估算一个话题/帖子在不同社交媒体平台间扩散的可能性。此外,我们还提出了一种新颖的可视化隐喻,以类似于种子在花园中传播的方式来概括跨平台传播。具体来说,我们将平台、帖子、隐含的跨平台路线和突出实例分别可视化为虚拟生态系统的元素--花园、花朵、风和种子。我们进一步开发了一个可视化分析系统,即 BloomWind,使用户能够快速识别跨平台传播模式并调查相关的社交媒体帖子。最后,我们通过两个案例研究展示了 BloomWind 的使用方法,并通过专家访谈验证了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
2024 VGTC Visualization Lifetime Achievement Award Investigating the Potential of Haptic Props for 3D Object Manipulation in Handheld AR. Visualization-Driven Illumination for Density Plots. "where Did My Apps Go?" Supporting Scalable and Transition-Aware Access to Everyday Applications in Head-Worn Augmented Reality. PGSR: Planar-based Gaussian Splatting for Efficient and High-Fidelity Surface Reconstruction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1