Wen Wen, Lu Lu, Renchao Xie, Qinqin Tang, Yuexia Fu, Tao Huang
{"title":"Secure incentive mechanism for energy trading in computing force networks enabled internet of vehicles: a contract theory approach","authors":"Wen Wen, Lu Lu, Renchao Xie, Qinqin Tang, Yuexia Fu, Tao Huang","doi":"10.1007/s11227-024-06369-2","DOIUrl":null,"url":null,"abstract":"<p>The integration of generative artificial intelligence (GAI) and internet of vehicles (IoV) will transform vehicular intelligence from conventional analytical intelligence to service-specific generative intelligence, enhancing vehicular services. In this context, computing force networks (CFNs), capable of flexibly scheduling widespread, multi-domain, multi-layer, and distributed resources, can cater to the demands of the IoV for ultra-high-density computing power and ultra-low latency. In CFNs, the integration of GAI and IoV consumes enormous energy, and GAI servers need to purchase energy from energy suppliers (ESs). However, the information asymmetry between GAI servers and ESs makes it difficult to price energy fairly and distributed ESs and GAI servers constitute a complex trading environment where malicious ESs may intentionally provide low-quality services. In this paper, to facilitate efficient and secure energy trading, and supply for ubiquitous AIGC services, we initially introduce an innovative CFNs-based GAI energy trading system architecture; present an energy consumption model for AIGC services, cost model of ESs, and reputation evaluation model of ESs; and obtain utility functions of GAI servers and ESs based on contract theory. Then, we propose a secure incentive mechanism in IoV, including designing an optimal contract scheme based on contract feasibility conditions and a safety guarantee mechanism based on blockchain. Simulation results demonstrate the feasibility and superiority of our energy trading mechanism.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06369-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of generative artificial intelligence (GAI) and internet of vehicles (IoV) will transform vehicular intelligence from conventional analytical intelligence to service-specific generative intelligence, enhancing vehicular services. In this context, computing force networks (CFNs), capable of flexibly scheduling widespread, multi-domain, multi-layer, and distributed resources, can cater to the demands of the IoV for ultra-high-density computing power and ultra-low latency. In CFNs, the integration of GAI and IoV consumes enormous energy, and GAI servers need to purchase energy from energy suppliers (ESs). However, the information asymmetry between GAI servers and ESs makes it difficult to price energy fairly and distributed ESs and GAI servers constitute a complex trading environment where malicious ESs may intentionally provide low-quality services. In this paper, to facilitate efficient and secure energy trading, and supply for ubiquitous AIGC services, we initially introduce an innovative CFNs-based GAI energy trading system architecture; present an energy consumption model for AIGC services, cost model of ESs, and reputation evaluation model of ESs; and obtain utility functions of GAI servers and ESs based on contract theory. Then, we propose a secure incentive mechanism in IoV, including designing an optimal contract scheme based on contract feasibility conditions and a safety guarantee mechanism based on blockchain. Simulation results demonstrate the feasibility and superiority of our energy trading mechanism.
生成式人工智能(GAI)与车联网(IoV)的融合将使车辆智能从传统的分析智能转变为针对特定服务的生成式智能,从而增强车辆服务。在此背景下,能够灵活调度大范围、多领域、多层次和分布式资源的计算力网络(CFN)可以满足车联网对超高密度计算力和超低延迟的需求。在 CFN 中,GAI 与 IoV 的整合会消耗大量能源,GAI 服务器需要向能源供应商(ES)购买能源。然而,由于 GAI 服务器和 ES 之间的信息不对称,很难对能源进行公平定价,而且分布式 ES 和 GAI 服务器构成了一个复杂的交易环境,恶意 ES 可能会故意提供低质量服务。为了促进高效、安全的能源交易,为无处不在的 AIGC 服务提供能源,本文首先介绍了一种创新的基于 CFNs 的 GAI 能源交易系统架构;提出了 AIGC 服务的能源消耗模型、ES 的成本模型和 ES 的信誉评价模型;并基于契约理论得到了 GAI 服务器和 ES 的效用函数。然后,我们提出了 IoV 中的安全激励机制,包括设计基于合约可行性条件的最优合约方案和基于区块链的安全保障机制。仿真结果证明了我们的能源交易机制的可行性和优越性。