{"title":"Effect of magnetic field and hydrodynamic slippage on electro-osmotic Brinkman flow through patterned zeta potential microchannel","authors":"Vishal Chhabra, Chandra Shekhar Nishad, Manoj Sahni, Vineet Kumar Chaurasiya","doi":"10.1007/s10665-024-10391-x","DOIUrl":null,"url":null,"abstract":"<p>An analytical investigation is conducted to analyze the impact of magnetic field and hydrodynamic slippage on two-dimensional electro-osmotic Brinkman flow in a microchannel with cosine surface zeta potential. The Brinkman equation is utilized to govern the fluid flow within a fully saturated, homogeneous, and isotropic porous medium. We consider a very small magnetic Reynolds number to eliminate the induced magnetic field equation. The Navier slip boundary condition is applied to assess the impact of hydrodynamic slippage. We utilize the Debye–Huckel length approximation to linearize the Poisson–Boltzmann equation, which governs the potential of the electrical double layer. The stream function is obtained analytically, and contour plots, velocity fields, shear stresses, and pressure gradients are assessed to gain a proper understanding of flow physics. We utilize the stream function to plot the streamline plots for distinct assumed flow parameters. We observed that for a fixed Darcy number, the intensity of flow vortices decreases with increasing Hartman number while increasing with increasing slip length. Further, altering the wave number in the assumed cosine-waved zeta potential causes asymmetrical recirculations in the flow, which helps in increasing the scalar mixing process in microdevices. Further, the proposed investigation has various crucial applications, such as microfluidic cooling systems, drug delivery systems, and so on.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-024-10391-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An analytical investigation is conducted to analyze the impact of magnetic field and hydrodynamic slippage on two-dimensional electro-osmotic Brinkman flow in a microchannel with cosine surface zeta potential. The Brinkman equation is utilized to govern the fluid flow within a fully saturated, homogeneous, and isotropic porous medium. We consider a very small magnetic Reynolds number to eliminate the induced magnetic field equation. The Navier slip boundary condition is applied to assess the impact of hydrodynamic slippage. We utilize the Debye–Huckel length approximation to linearize the Poisson–Boltzmann equation, which governs the potential of the electrical double layer. The stream function is obtained analytically, and contour plots, velocity fields, shear stresses, and pressure gradients are assessed to gain a proper understanding of flow physics. We utilize the stream function to plot the streamline plots for distinct assumed flow parameters. We observed that for a fixed Darcy number, the intensity of flow vortices decreases with increasing Hartman number while increasing with increasing slip length. Further, altering the wave number in the assumed cosine-waved zeta potential causes asymmetrical recirculations in the flow, which helps in increasing the scalar mixing process in microdevices. Further, the proposed investigation has various crucial applications, such as microfluidic cooling systems, drug delivery systems, and so on.
期刊介绍:
The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following:
• Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods.
• Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas.
The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly.
Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.