A centralized delay-sensitive hierarchical computation offloading in fog radio access networks

Samira Taheri, Neda Moghim, Naser Movahhedinia, Sachin Shetty
{"title":"A centralized delay-sensitive hierarchical computation offloading in fog radio access networks","authors":"Samira Taheri, Neda Moghim, Naser Movahhedinia, Sachin Shetty","doi":"10.1007/s11227-024-06454-6","DOIUrl":null,"url":null,"abstract":"<p>MEC (Multi-access Edge Computing) is vital in 5G and beyond (B5G) for reducing latency and enhancing network efficiency through local processing, crucial for real-time applications and improved security. This drives the adoption of advanced architectures like Fog Radio Access Network (F-RAN), which uses distributed resources from Radio Resource Heads (RRHs) or fog nodes to enable parallel computation. Each user equipment (UE) task can be processed by RRHs, fog access points, cloud servers, or the UE itself, depending on resource capacities. We propose MoNoR, a centralized approach for optimal task processing in F-RAN. MoNoR optimizes the selection of offloading modes, assignment of tasks to computation nodes, and allocation of radio resources using global network information. Given the computational complexity of this endeavor, we employ an evolutionary optimization technique rooted in Genetic Algorithms to address the problem efficiently. Simulations show MoNoR's superiority in minimizing latency over previous F-RAN offloading strategies.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06454-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MEC (Multi-access Edge Computing) is vital in 5G and beyond (B5G) for reducing latency and enhancing network efficiency through local processing, crucial for real-time applications and improved security. This drives the adoption of advanced architectures like Fog Radio Access Network (F-RAN), which uses distributed resources from Radio Resource Heads (RRHs) or fog nodes to enable parallel computation. Each user equipment (UE) task can be processed by RRHs, fog access points, cloud servers, or the UE itself, depending on resource capacities. We propose MoNoR, a centralized approach for optimal task processing in F-RAN. MoNoR optimizes the selection of offloading modes, assignment of tasks to computation nodes, and allocation of radio resources using global network information. Given the computational complexity of this endeavor, we employ an evolutionary optimization technique rooted in Genetic Algorithms to address the problem efficiently. Simulations show MoNoR's superiority in minimizing latency over previous F-RAN offloading strategies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雾无线接入网络中的集中式延迟敏感分层计算卸载
MEC(多接入边缘计算)在 5G 及以后(B5G)中至关重要,可通过本地处理减少延迟并提高网络效率,这对实时应用和提高安全性至关重要。这推动了雾无线接入网(F-RAN)等先进架构的采用,该架构利用无线资源头(RRH)或雾节点的分布式资源实现并行计算。每个用户设备(UE)任务可由 RRH、雾接入点、云服务器或 UE 本身处理,具体取决于资源容量。我们提出了一种在 F-RAN 中优化任务处理的集中式方法 MoNoR。MoNoR 利用全局网络信息优化卸载模式选择、计算节点任务分配和无线电资源分配。考虑到这一工作的计算复杂性,我们采用了植根于遗传算法的进化优化技术来有效解决这一问题。仿真结果表明,与之前的 F-RAN 卸载策略相比,MoNoR 在最小化延迟方面更具优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quadratic regression model to quantify certain latest corona treatment drug molecules based on coindices of M-polynomial Data integration from traditional to big data: main features and comparisons of ETL approaches End-to-end probability analysis method for multi-core distributed systems A cloud computing approach to superscale colored traveling salesman problems Approximating neural distinguishers using differential-linear imbalance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1