Secure and efficient general matrix multiplication on cloud using homomorphic encryption

Yang Gao, Gang Quan, Soamar Homsi, Wujie Wen, Liqiang Wang
{"title":"Secure and efficient general matrix multiplication on cloud using homomorphic encryption","authors":"Yang Gao, Gang Quan, Soamar Homsi, Wujie Wen, Liqiang Wang","doi":"10.1007/s11227-024-06428-8","DOIUrl":null,"url":null,"abstract":"<p>Despite the enormous technical and financial advantages of cloud computing, security and privacy have always been the primary concerns for adopting cloud computing facilities, especially for government agencies and commercial sectors with high-security requirements. Homomorphic encryption (HE) has recently emerged as an effective tool in ensuring privacy and security for sensitive applications by allowing computing on encrypted data. One major obstacle to employing HE-based computation, however, is its excessive computational cost, which can be orders of magnitude higher than its counterpart based on the plaintext. In this paper, we study the problem of how to reduce the HE-based computational cost for general matrix multiplication, i.e., a fundamental building block for numerous practical applications, by taking advantage of the single instruction multiple data operations supported by HE schemes. Specifically, we develop a novel element-wise algorithm for general matrix multiplication, based on which we propose two HE-based general matrix multiplication algorithms to reduce the HE computation cost. Our experimental results show that our algorithms significantly outperform the state-of-the-art approaches of HE-based matrix multiplication.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06428-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the enormous technical and financial advantages of cloud computing, security and privacy have always been the primary concerns for adopting cloud computing facilities, especially for government agencies and commercial sectors with high-security requirements. Homomorphic encryption (HE) has recently emerged as an effective tool in ensuring privacy and security for sensitive applications by allowing computing on encrypted data. One major obstacle to employing HE-based computation, however, is its excessive computational cost, which can be orders of magnitude higher than its counterpart based on the plaintext. In this paper, we study the problem of how to reduce the HE-based computational cost for general matrix multiplication, i.e., a fundamental building block for numerous practical applications, by taking advantage of the single instruction multiple data operations supported by HE schemes. Specifically, we develop a novel element-wise algorithm for general matrix multiplication, based on which we propose two HE-based general matrix multiplication algorithms to reduce the HE computation cost. Our experimental results show that our algorithms significantly outperform the state-of-the-art approaches of HE-based matrix multiplication.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用同态加密在云上安全高效地进行通用矩阵乘法运算
尽管云计算具有巨大的技术和经济优势,但安全和隐私一直是采用云计算设施的首要问题,尤其是对具有高安全要求的政府机构和商业部门而言。同态加密(HE)允许对加密数据进行计算,是确保敏感应用隐私和安全的有效工具。然而,采用基于 HE 的计算的一个主要障碍是计算成本过高,可能比基于明文的计算成本高出几个数量级。在本文中,我们研究了如何利用 HE 方案支持的单指令多数据操作,降低基于 HE 的通用矩阵乘法计算成本的问题。具体来说,我们开发了一种新颖的通用矩阵乘法按元素计算的算法,并在此基础上提出了两种基于 HE 的通用矩阵乘法算法,以降低 HE 计算成本。实验结果表明,我们的算法明显优于最先进的基于 HE 的矩阵乘法方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quadratic regression model to quantify certain latest corona treatment drug molecules based on coindices of M-polynomial Data integration from traditional to big data: main features and comparisons of ETL approaches End-to-end probability analysis method for multi-core distributed systems A cloud computing approach to superscale colored traveling salesman problems Approximating neural distinguishers using differential-linear imbalance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1