HADTF: a hybrid autoencoder–decision tree framework for improved RPL-based attack detection in IoT networks based on enhanced feature selection approach

Musa Osman, Jingsha He, Nafei Zhu, Fawaz Mahiuob Mohammed Mokbal, Asaad Ahmed
{"title":"HADTF: a hybrid autoencoder–decision tree framework for improved RPL-based attack detection in IoT networks based on enhanced feature selection approach","authors":"Musa Osman, Jingsha He, Nafei Zhu, Fawaz Mahiuob Mohammed Mokbal, Asaad Ahmed","doi":"10.1007/s11227-024-06453-7","DOIUrl":null,"url":null,"abstract":"<p>The Internet of Things (IoT) is evolving rapidly, increasing demand for safeguarding data against routing attacks. While achieving complete security for RPL protocols remains an ongoing challenge, this paper introduces an innovative hybrid autoencoder–decision tree framework (HADTF) designed to detect four types of RPL attacks: decreased rank, version number, DIS flooding, and blackhole attacks. The HADTF comprises three key components: enhanced feature extraction, feature selection, and a hybrid autoencoder–decision tree classifier. The enhanced feature extraction module identifies the most pertinent features from the raw data collected, while the feature selection component carefully curates’ optimal features to reduce dimensionality. The hybrid autoencoder–decision tree classifier synergizes the strengths of both techniques, resulting in high accuracy and detection rates while effectively minimizing false positives and false negatives. To assess the effectiveness of the HADTF, we conducted evaluations using a self-generated dataset. The results demonstrate impressive performance with an accuracy of 97.41%, precision of 97%, recall of 97%, and F1-score of 97%. These findings underscore the potential of the HADTF as a promising solution for detecting RPL attacks within IoT networks.</p>","PeriodicalId":501596,"journal":{"name":"The Journal of Supercomputing","volume":"123 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11227-024-06453-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) is evolving rapidly, increasing demand for safeguarding data against routing attacks. While achieving complete security for RPL protocols remains an ongoing challenge, this paper introduces an innovative hybrid autoencoder–decision tree framework (HADTF) designed to detect four types of RPL attacks: decreased rank, version number, DIS flooding, and blackhole attacks. The HADTF comprises three key components: enhanced feature extraction, feature selection, and a hybrid autoencoder–decision tree classifier. The enhanced feature extraction module identifies the most pertinent features from the raw data collected, while the feature selection component carefully curates’ optimal features to reduce dimensionality. The hybrid autoencoder–decision tree classifier synergizes the strengths of both techniques, resulting in high accuracy and detection rates while effectively minimizing false positives and false negatives. To assess the effectiveness of the HADTF, we conducted evaluations using a self-generated dataset. The results demonstrate impressive performance with an accuracy of 97.41%, precision of 97%, recall of 97%, and F1-score of 97%. These findings underscore the potential of the HADTF as a promising solution for detecting RPL attacks within IoT networks.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HADTF:基于增强型特征选择方法的混合自动编码器-决策树框架,用于改进物联网网络中基于 RPL 的攻击检测
物联网(IoT)发展迅速,对保护数据免受路由攻击的需求也随之增加。虽然实现 RPL 协议的完全安全仍是一个持续的挑战,但本文介绍了一种创新的混合自动编码器-决策树框架(HADTF),旨在检测四种类型的 RPL 攻击:等级下降、版本号、DIS 泛洪和黑洞攻击。HADTF 由三个关键部分组成:增强特征提取、特征选择和混合自动编码器-决策树分类器。增强型特征提取模块从收集到的原始数据中识别出最相关的特征,而特征选择组件则精心挑选出最佳特征以降低维度。混合自动编码器-决策树分类器协同了两种技术的优势,从而实现了高准确率和高检测率,同时有效地减少了误报和误判。为了评估 HADTF 的有效性,我们使用自生成的数据集进行了评估。结果表明,HADTF 的准确率为 97.41%,精确率为 97%,召回率为 97%,F1 分数为 97%,表现令人印象深刻。这些发现凸显了 HADTF 作为检测物联网网络中 RPL 攻击的有前途的解决方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A quadratic regression model to quantify certain latest corona treatment drug molecules based on coindices of M-polynomial Data integration from traditional to big data: main features and comparisons of ETL approaches End-to-end probability analysis method for multi-core distributed systems A cloud computing approach to superscale colored traveling salesman problems Approximating neural distinguishers using differential-linear imbalance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1