{"title":"Versatile Electronic and Structural Properties of Ruthenium-Mediated 1,4-Diaza-1,3-butadiene Ligands: A Review","authors":"A. S. Roy","doi":"10.1134/S1070328423601449","DOIUrl":null,"url":null,"abstract":"<p>Ruthenium α-diimine complexes are widely known for their unique low-lying excited states and potent light absorption capabilities in the visible and NIR regions. A few specially constructed Ru α-diimine complexes have also shown enormous potential in the biomedical field. Several Ru-diimine complexes are well known for their catalytic activity. In this context, the simplest α-diimine system is 1,4-diaza-1,3-butadiene, abbreviated as (DAB/DAD), which received the greatest attention from the research communities. DAB ligands are redox-active. DAB ligands typically function as effective electron donors by employing lone pairs of nitrogen atoms and the π-electrons of the C=N bonds while coordinating the metal ion. The structural, electronic, and photophysical properties of the metal-mediated (DAB) complexes largely depend on the substitution of the ligand backbone as well as metal precursors. A versatile ‘redox noninnocent’ 1,4-diaza-1,3-butadiene motif can stabilise different oxidation states of ruthenium metal depending on the reaction conditions and the presence of co-ligands. The comparative studies of the structural and electrical characteristics of diverse ruthenium-DAB compounds are intriguing, which opens up a new route for researchers to utilise them in a variety of application domains. It is challenging and fascinating to determine the precise electronic structure of redox noninnocent diimine complexes in the presence of a ‘redox active’ metal like ruthenium. In this concise review, we provided a brief overview of the structural and electrical features of various Ru DAB complexes that solely comprise (–N=CH–CH=N–) fragments in the skeleton.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1070328423601449","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ruthenium α-diimine complexes are widely known for their unique low-lying excited states and potent light absorption capabilities in the visible and NIR regions. A few specially constructed Ru α-diimine complexes have also shown enormous potential in the biomedical field. Several Ru-diimine complexes are well known for their catalytic activity. In this context, the simplest α-diimine system is 1,4-diaza-1,3-butadiene, abbreviated as (DAB/DAD), which received the greatest attention from the research communities. DAB ligands are redox-active. DAB ligands typically function as effective electron donors by employing lone pairs of nitrogen atoms and the π-electrons of the C=N bonds while coordinating the metal ion. The structural, electronic, and photophysical properties of the metal-mediated (DAB) complexes largely depend on the substitution of the ligand backbone as well as metal precursors. A versatile ‘redox noninnocent’ 1,4-diaza-1,3-butadiene motif can stabilise different oxidation states of ruthenium metal depending on the reaction conditions and the presence of co-ligands. The comparative studies of the structural and electrical characteristics of diverse ruthenium-DAB compounds are intriguing, which opens up a new route for researchers to utilise them in a variety of application domains. It is challenging and fascinating to determine the precise electronic structure of redox noninnocent diimine complexes in the presence of a ‘redox active’ metal like ruthenium. In this concise review, we provided a brief overview of the structural and electrical features of various Ru DAB complexes that solely comprise (–N=CH–CH=N–) fragments in the skeleton.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.