A New Graph Autoencoder-Based Multi-Level Kernel Subspace Fusion Framework for Single-Cell Type Identification

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS IEEE/ACM Transactions on Computational Biology and Bioinformatics Pub Date : 2024-09-12 DOI:10.1109/TCBB.2024.3459960
Juan Wang;Tian-Jing Qiao;Chun-Hou Zheng;Jin-Xing Liu;Jun-Liang Shang
{"title":"A New Graph Autoencoder-Based Multi-Level Kernel Subspace Fusion Framework for Single-Cell Type Identification","authors":"Juan Wang;Tian-Jing Qiao;Chun-Hou Zheng;Jin-Xing Liu;Jun-Liang Shang","doi":"10.1109/TCBB.2024.3459960","DOIUrl":null,"url":null,"abstract":"The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2292-2303"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679652/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图自动编码器的单细胞类型识别多级核子空间融合新框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
期刊最新文献
Guest Editorial Guest Editorial for the 20th Asia Pacific Bioinformatics Conference iAnOxPep: a machine learning model for the identification of anti-oxidative peptides using ensemble learning. DeepLigType: Predicting Ligand Types of Protein-Ligand Binding Sites Using a Deep Learning Model. Performance Comparison between Deep Neural Network and Machine Learning based Classifiers for Huntington Disease Prediction from Human DNA Sequence. AI-based Computational Methods in Early Drug Discovery and Post Market Drug Assessment: A Survey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1