Combining Zhegalkin Polynomials and SAT Solving for Context-Specific Boolean Modeling of Biological Systems

IF 3.6 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS IEEE/ACM Transactions on Computational Biology and Bioinformatics Pub Date : 2024-09-10 DOI:10.1109/TCBB.2024.3456302
Vincent Deman;Marine Ciantar;Laurent Naudin;Philippe Castera;Anne-Sophie Beignon
{"title":"Combining Zhegalkin Polynomials and SAT Solving for Context-Specific Boolean Modeling of Biological Systems","authors":"Vincent Deman;Marine Ciantar;Laurent Naudin;Philippe Castera;Anne-Sophie Beignon","doi":"10.1109/TCBB.2024.3456302","DOIUrl":null,"url":null,"abstract":"Large amounts of knowledge regarding biological processes are readily available in the literature and aggregated in diverse databases. Boolean networks are powerful tools to render that knowledge into models that can mimic and simulate biological phenomena at multiple scales. Yet, when a model is required to understand or predict the behavior of a biological system in given conditions, existing information often does not completely match this context. Networks built from only prior knowledge can overlook mechanisms, lack specificity, and just partially recapitulate experimental observations. To address this limitation, context-specific data needs to be integrated. However, the brute-force identification of qualitative rules matching these data becomes infeasible as the number of candidates explodes for increasingly complex systems. Here, we used Zhegalkin polynomials to transform this identification into a binary value assignment for exponentially fewer variables, which we addressed with a state-of-the-art SAT solver. We evaluated our implemented method alongside two widely recognized tools, CellNetOptimizer and Caspo-ts, on both artificial toy models and large-scale models based on experimental data from the HPN-DREAM challenge. Our approach demonstrated benchmark-leading capabilities on networks of significant size and intricate complexity. It thus appears promising for the \n<italic>in silico</i>\n modeling of ever more comprehensive biological systems.","PeriodicalId":13344,"journal":{"name":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","volume":"21 6","pages":"2188-2199"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10671585","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Computational Biology and Bioinformatics","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10671585/","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Large amounts of knowledge regarding biological processes are readily available in the literature and aggregated in diverse databases. Boolean networks are powerful tools to render that knowledge into models that can mimic and simulate biological phenomena at multiple scales. Yet, when a model is required to understand or predict the behavior of a biological system in given conditions, existing information often does not completely match this context. Networks built from only prior knowledge can overlook mechanisms, lack specificity, and just partially recapitulate experimental observations. To address this limitation, context-specific data needs to be integrated. However, the brute-force identification of qualitative rules matching these data becomes infeasible as the number of candidates explodes for increasingly complex systems. Here, we used Zhegalkin polynomials to transform this identification into a binary value assignment for exponentially fewer variables, which we addressed with a state-of-the-art SAT solver. We evaluated our implemented method alongside two widely recognized tools, CellNetOptimizer and Caspo-ts, on both artificial toy models and large-scale models based on experimental data from the HPN-DREAM challenge. Our approach demonstrated benchmark-leading capabilities on networks of significant size and intricate complexity. It thus appears promising for the in silico modeling of ever more comprehensive biological systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合哲加金多项式和 SAT 求解,建立生物系统的特定语境布尔模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
479
审稿时长
3 months
期刊介绍: IEEE/ACM Transactions on Computational Biology and Bioinformatics emphasizes the algorithmic, mathematical, statistical and computational methods that are central in bioinformatics and computational biology; the development and testing of effective computer programs in bioinformatics; the development of biological databases; and important biological results that are obtained from the use of these methods, programs and databases; the emerging field of Systems Biology, where many forms of data are used to create a computer-based model of a complex biological system
期刊最新文献
Guest Editorial Guest Editorial for the 20th Asia Pacific Bioinformatics Conference iAnOxPep: a machine learning model for the identification of anti-oxidative peptides using ensemble learning. DeepLigType: Predicting Ligand Types of Protein-Ligand Binding Sites Using a Deep Learning Model. Performance Comparison between Deep Neural Network and Machine Learning based Classifiers for Huntington Disease Prediction from Human DNA Sequence. AI-based Computational Methods in Early Drug Discovery and Post Market Drug Assessment: A Survey.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1