Characterization and Pathogenicity of Colletotrichum truncatum Causing Hylocereus undatus Anthracnose through the Changes of Cell Wall-Degrading Enzymes and Components in Fruits
{"title":"Characterization and Pathogenicity of Colletotrichum truncatum Causing Hylocereus undatus Anthracnose through the Changes of Cell Wall-Degrading Enzymes and Components in Fruits","authors":"Shuwu Zhang, Yun Liu, Jia Liu, Enchen Li, Bingliang Xu","doi":"10.3390/jof10090652","DOIUrl":null,"url":null,"abstract":"Anthracnose is one of the destructive diseases of pitaya that seriously affects the plant growth and fruit quality and causes significant yield and economic losses worldwide. However, information regarding the species of pathogens that cause anthracnose in pitaya (Hylocereus undatus) fruits in Gansu Province, China, and its pathogenic mechanism is unknown. Thus, the purposes of our present study were to identify the species of pathogens causing H. undatus fruits anthracnose based on the morphological and molecular characteristics and determine its pathogenic mechanism by physiological and biochemical methods. In our present study, forty-six isolates were isolated from the collected samples of diseased H. undatus fruits and classified as three types (named as H-1, H-2, and H-3), according to the colony and conidium morphological characteristics. The isolation frequencies of H-1, H-2, and H-3 types were 63.04%, 21.74%, and 15.22%, respectively. The representative single-spore isolate of HLGTJ-1 in H-1 type has significant pathogenicity, and finally we identified Colletotrichum truncatum as the pathogen based on the morphological characteristics as well as multi-locus sequence analysis. Moreover, the H. undatus fruits inoculated with C. truncatum had a significantly increased activity of cell wall-degrading enzymes (CWDEs) cellulase (Cx), β-glucosidase (β-Glu), polygalacturonase (PG), and pectin methylgalacturonase (PMG), while having a decreased level of cell wall components of original pectin and cellulose in comparison to control. The average increased activities of Cx, β-Glu, PG, and PMG were 30.73%, 40.40%, 51.55%, and 32.23% from day 0 to 6 after inoculation, respectively. In contrast, the average decreased contents of original pectin and cellulose were 1.82% and 16.47%, respectively, whereas the average increased soluble pectin content was 38.31% in comparison to control. Our results indicate that C. truncatum infection increased the activities of CWDEs in H. undatus fruits to disassemble their cell wall components, finally leading to the fruits’ decay and deterioration. Thus, our findings will provide significant evidence in the controlling of pitaya anthracnose in the future.","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"20 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10090652","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anthracnose is one of the destructive diseases of pitaya that seriously affects the plant growth and fruit quality and causes significant yield and economic losses worldwide. However, information regarding the species of pathogens that cause anthracnose in pitaya (Hylocereus undatus) fruits in Gansu Province, China, and its pathogenic mechanism is unknown. Thus, the purposes of our present study were to identify the species of pathogens causing H. undatus fruits anthracnose based on the morphological and molecular characteristics and determine its pathogenic mechanism by physiological and biochemical methods. In our present study, forty-six isolates were isolated from the collected samples of diseased H. undatus fruits and classified as three types (named as H-1, H-2, and H-3), according to the colony and conidium morphological characteristics. The isolation frequencies of H-1, H-2, and H-3 types were 63.04%, 21.74%, and 15.22%, respectively. The representative single-spore isolate of HLGTJ-1 in H-1 type has significant pathogenicity, and finally we identified Colletotrichum truncatum as the pathogen based on the morphological characteristics as well as multi-locus sequence analysis. Moreover, the H. undatus fruits inoculated with C. truncatum had a significantly increased activity of cell wall-degrading enzymes (CWDEs) cellulase (Cx), β-glucosidase (β-Glu), polygalacturonase (PG), and pectin methylgalacturonase (PMG), while having a decreased level of cell wall components of original pectin and cellulose in comparison to control. The average increased activities of Cx, β-Glu, PG, and PMG were 30.73%, 40.40%, 51.55%, and 32.23% from day 0 to 6 after inoculation, respectively. In contrast, the average decreased contents of original pectin and cellulose were 1.82% and 16.47%, respectively, whereas the average increased soluble pectin content was 38.31% in comparison to control. Our results indicate that C. truncatum infection increased the activities of CWDEs in H. undatus fruits to disassemble their cell wall components, finally leading to the fruits’ decay and deterioration. Thus, our findings will provide significant evidence in the controlling of pitaya anthracnose in the future.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.