Wei Zhang, Deming Wang, Zhenhai Hou, Chenguang Wang
{"title":"Evolution and Disaster-Causing Characteristics of Air-Leakage Fractures in Shallow Thick Coal Seams: A Case Study","authors":"Wei Zhang, Deming Wang, Zhenhai Hou, Chenguang Wang","doi":"10.1007/s42461-024-01068-1","DOIUrl":null,"url":null,"abstract":"<p>Composite air leakage from mining-induced fractures is a critical cause of coal spontaneous combustion and gas explosions in a shallow-buried goaf. Physics simulations and numerical calculations were performed to elucidate the dynamic evolution law of air-leakage fractures during mining. The results showed that overburden and surface fractures were the main channels for airflow in the goaf. Additionally, the generation of all fractures was primarily controlled by the key stratum. The dynamic development of overburden fractures was evident during mining, and the fractures underwent opening, closing, and stabilization. The spatial distribution of the overburden fractures was shaped like a double trapezoid. In the low trapezoid, the overall fracture density was high, but the middle fractures were poor because of compaction. In the high trapezoid, horizontal fractures were widely distributed and relatively large, and vertical fractures were mainly distributed on the sides and middle, which were interconnected with the horizontal fractures and penetrated the surface to form composite air-leakage channels. The abundance of fractures from the surface and goaf was the primary cause of multi-source air leakages deep behind the 2421–1 working face in the Baijigou coal mine.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"11 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01068-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Composite air leakage from mining-induced fractures is a critical cause of coal spontaneous combustion and gas explosions in a shallow-buried goaf. Physics simulations and numerical calculations were performed to elucidate the dynamic evolution law of air-leakage fractures during mining. The results showed that overburden and surface fractures were the main channels for airflow in the goaf. Additionally, the generation of all fractures was primarily controlled by the key stratum. The dynamic development of overburden fractures was evident during mining, and the fractures underwent opening, closing, and stabilization. The spatial distribution of the overburden fractures was shaped like a double trapezoid. In the low trapezoid, the overall fracture density was high, but the middle fractures were poor because of compaction. In the high trapezoid, horizontal fractures were widely distributed and relatively large, and vertical fractures were mainly distributed on the sides and middle, which were interconnected with the horizontal fractures and penetrated the surface to form composite air-leakage channels. The abundance of fractures from the surface and goaf was the primary cause of multi-source air leakages deep behind the 2421–1 working face in the Baijigou coal mine.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.