Eric Munene Kinyua, Zhang Jianhua, Gang Huang, Randriamamphionona M. Dinaniaina, Richard M. Kasomo, Sami Ullah
{"title":"Application of Gaussian Process Regression for Bench Blasting Rock Fragmentation Prediction and Optimization at Wolongan Open-Pit Mine","authors":"Eric Munene Kinyua, Zhang Jianhua, Gang Huang, Randriamamphionona M. Dinaniaina, Richard M. Kasomo, Sami Ullah","doi":"10.1007/s42461-024-01050-x","DOIUrl":null,"url":null,"abstract":"<p>This study developed a Gaussian process regression (GPR) model to predict and optimize blast fragmentation at Wolongan Mine by using the primary data from the mine and secondary data from other mines. The blast data comprised 125 datasets, each containing seven blast design parameters as inputs and the muckpile mean fragment size as the model output. Additionally, the study developed artificial neural networks (ANNs), support vector regression (SVR), and multiple linear regression (MLR) models, and compared their prediction performances with the GPR model. The models’ accuracies were evaluated using five statistical metrics, including coefficient of determination (<span>\\({R}^{2}\\)</span>), root mean square error (RMSE), variance accounted for (VAF), mean absolute bias error (MABE), and mean absolute percentage error (MAPE). The GPR model outperformed the other models, with <span>\\({R}^{2}\\)</span>, RMSE, VAF, MABE, and MAPE values of 0.9302, 0.0487, 93.2670, 0.0383, and 13.9405, respectively, for the test data. Based on the top-down correlation and Kendall’s coefficient of concordance analyses on the four sensitivity analysis methods used, the study found that the in situ block size and Young’s modulus of the rock were the most important parameters affecting fragmentation. Using the GPR model, the study showed that reducing the blast burden by 13–23% could decrease the mean fragment size of the muckpile at Wolongan Mine by 6–12%, leading to a significant reduction in the percentage of boulders.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"38 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01050-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
This study developed a Gaussian process regression (GPR) model to predict and optimize blast fragmentation at Wolongan Mine by using the primary data from the mine and secondary data from other mines. The blast data comprised 125 datasets, each containing seven blast design parameters as inputs and the muckpile mean fragment size as the model output. Additionally, the study developed artificial neural networks (ANNs), support vector regression (SVR), and multiple linear regression (MLR) models, and compared their prediction performances with the GPR model. The models’ accuracies were evaluated using five statistical metrics, including coefficient of determination (\({R}^{2}\)), root mean square error (RMSE), variance accounted for (VAF), mean absolute bias error (MABE), and mean absolute percentage error (MAPE). The GPR model outperformed the other models, with \({R}^{2}\), RMSE, VAF, MABE, and MAPE values of 0.9302, 0.0487, 93.2670, 0.0383, and 13.9405, respectively, for the test data. Based on the top-down correlation and Kendall’s coefficient of concordance analyses on the four sensitivity analysis methods used, the study found that the in situ block size and Young’s modulus of the rock were the most important parameters affecting fragmentation. Using the GPR model, the study showed that reducing the blast burden by 13–23% could decrease the mean fragment size of the muckpile at Wolongan Mine by 6–12%, leading to a significant reduction in the percentage of boulders.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.