{"title":"Convexification techniques for fractional programs","authors":"Taotao He, Siyue Liu, Mohit Tawarmalani","doi":"10.1007/s10107-024-02131-x","DOIUrl":null,"url":null,"abstract":"<p>This paper develops a correspondence relating convex hulls of fractional functions with those of polynomial functions over the same domain. Using this result, we develop a number of new reformulations and relaxations for fractional programming problems. First, we relate <span>\\(0\\mathord {-}1\\)</span> problems involving a ratio of affine functions with the boolean quadric polytope, and use inequalities for the latter to develop tighter formulations for the former. Second, we derive a new formulation to optimize a ratio of quadratic functions over a polytope using copositive programming. Third, we show that univariate fractional functions can be convexified using moment hulls. Fourth, we develop a new hierarchy of relaxations that converges finitely to the simultaneous convex hull of a collection of ratios of affine functions of <span>\\(0\\mathord {-}1\\)</span> variables. Finally, we demonstrate theoretically and computationally that our techniques close a significant gap relative to state-of-the-art relaxations, require much less computational effort, and can solve larger problem instances.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02131-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper develops a correspondence relating convex hulls of fractional functions with those of polynomial functions over the same domain. Using this result, we develop a number of new reformulations and relaxations for fractional programming problems. First, we relate \(0\mathord {-}1\) problems involving a ratio of affine functions with the boolean quadric polytope, and use inequalities for the latter to develop tighter formulations for the former. Second, we derive a new formulation to optimize a ratio of quadratic functions over a polytope using copositive programming. Third, we show that univariate fractional functions can be convexified using moment hulls. Fourth, we develop a new hierarchy of relaxations that converges finitely to the simultaneous convex hull of a collection of ratios of affine functions of \(0\mathord {-}1\) variables. Finally, we demonstrate theoretically and computationally that our techniques close a significant gap relative to state-of-the-art relaxations, require much less computational effort, and can solve larger problem instances.