Study on Slope Instability Mechanism and Constant Resistance Large Deformation Anchor Cable Control Technology in Strongly Weathered Strata of Open-Pit Mine
Yang Xiaojie, Wang Jingxiang, Tao Zhigang, Liu Keyuan, Shen Fuxin
{"title":"Study on Slope Instability Mechanism and Constant Resistance Large Deformation Anchor Cable Control Technology in Strongly Weathered Strata of Open-Pit Mine","authors":"Yang Xiaojie, Wang Jingxiang, Tao Zhigang, Liu Keyuan, Shen Fuxin","doi":"10.1007/s42461-024-01076-1","DOIUrl":null,"url":null,"abstract":"<p>To investigate the failure mechanisms of slopes and develop an integrated approach for slope reinforcement, monitoring, and early warning, the Daye open-pit copper mine slope was selected as the case study. Initially, field investigations and analyses of engineering geological conditions were performed to elucidate the deformation instability mechanisms of the slope. Subsequently, a numerical model was established to evaluate the slope reinforcement efficacy of constant resistance large deformation (CRLD) anchor cables with different anchorage lengths. The results demonstrate that increasing the anchorage length of CRLD anchor cables leads to a reduction in total slope displacement and an enhancement in the slope safety factor. The axial force distribution within the slope was segmented into three distinct zones: concentration area, transition area, and stable area. The optimal safety factor was achieved at an anchorage length of 20 m. This study provides insights into the slope deformation mechanisms, the anchorage performance of CRLD anchor cables, and their optimal anchorage lengths. Based on the findings, an integrated scheme for slope reinforcement, monitoring, and early warning is proposed. The field application results indicate significant improvements in the stability of the Daye open-pit copper mine slope.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"6 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01076-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the failure mechanisms of slopes and develop an integrated approach for slope reinforcement, monitoring, and early warning, the Daye open-pit copper mine slope was selected as the case study. Initially, field investigations and analyses of engineering geological conditions were performed to elucidate the deformation instability mechanisms of the slope. Subsequently, a numerical model was established to evaluate the slope reinforcement efficacy of constant resistance large deformation (CRLD) anchor cables with different anchorage lengths. The results demonstrate that increasing the anchorage length of CRLD anchor cables leads to a reduction in total slope displacement and an enhancement in the slope safety factor. The axial force distribution within the slope was segmented into three distinct zones: concentration area, transition area, and stable area. The optimal safety factor was achieved at an anchorage length of 20 m. This study provides insights into the slope deformation mechanisms, the anchorage performance of CRLD anchor cables, and their optimal anchorage lengths. Based on the findings, an integrated scheme for slope reinforcement, monitoring, and early warning is proposed. The field application results indicate significant improvements in the stability of the Daye open-pit copper mine slope.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.