{"title":"Challenges in the Battery Raw Materials Supply Chain: Achieving Decarbonisation from a Mineral Extraction Perspective","authors":"Landon Jackson, C. Meinke, R. Chandramohan","doi":"10.1007/s42461-024-01070-7","DOIUrl":null,"url":null,"abstract":"<p>Understanding constraints within the raw battery material supply chain is essential for making informed decisions that will ensure the battery industry’s future success. The primary limiting factor for long-term mass production of batteries is mineral extraction constraints. These constraints are highlighted in a first-fill analysis which showed significant risks if lithium-ion batteries are utilised to fully support vehicle electrification and intermittent energy storage. Nickel, lithium, cobalt, and graphite reserves risk 100% depletion with significant consumption of known resources. Furthermore, over 700 new critical mineral mines will need to be developed to meet the required production rates for decarbonisation by 2050. Demand for critical minerals will out-pace mine development timelines even as improvements are made to battery energy density and compositions. Governments and the private sector need to align themselves on decarbonisation goals to establish cooperative agreements on the critical mineral supply chain by reducing the barriers to entry and increasing exploration efforts. Additional measures must also be taken to reduce the demand for critical minerals. Policy such as incentivising public transportation and biking infrastructure can be exploited to drastically reduce the mineral demand placed on the mining industry.</p>","PeriodicalId":18588,"journal":{"name":"Mining, Metallurgy & Exploration","volume":"33 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining, Metallurgy & Exploration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01070-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding constraints within the raw battery material supply chain is essential for making informed decisions that will ensure the battery industry’s future success. The primary limiting factor for long-term mass production of batteries is mineral extraction constraints. These constraints are highlighted in a first-fill analysis which showed significant risks if lithium-ion batteries are utilised to fully support vehicle electrification and intermittent energy storage. Nickel, lithium, cobalt, and graphite reserves risk 100% depletion with significant consumption of known resources. Furthermore, over 700 new critical mineral mines will need to be developed to meet the required production rates for decarbonisation by 2050. Demand for critical minerals will out-pace mine development timelines even as improvements are made to battery energy density and compositions. Governments and the private sector need to align themselves on decarbonisation goals to establish cooperative agreements on the critical mineral supply chain by reducing the barriers to entry and increasing exploration efforts. Additional measures must also be taken to reduce the demand for critical minerals. Policy such as incentivising public transportation and biking infrastructure can be exploited to drastically reduce the mineral demand placed on the mining industry.
期刊介绍:
The aim of this international peer-reviewed journal of the Society for Mining, Metallurgy & Exploration (SME) is to provide a broad-based forum for the exchange of real-world and theoretical knowledge from academia, government and industry that is pertinent to mining, mineral/metallurgical processing, exploration and other fields served by the Society.
The journal publishes high-quality original research publications, in-depth special review articles, reviews of state-of-the-art and innovative technologies and industry methodologies, communications of work of topical and emerging interest, and other works that enhance understanding on both the fundamental and practical levels.