Explainable AI for computational pathology identifies model limitations and tissue biomarkers

Jakub R. Kaczmarzyk, Joel H. Saltz, Peter K. Koo
{"title":"Explainable AI for computational pathology identifies model limitations and tissue biomarkers","authors":"Jakub R. Kaczmarzyk, Joel H. Saltz, Peter K. Koo","doi":"arxiv-2409.03080","DOIUrl":null,"url":null,"abstract":"Deep learning models have shown promise in histopathology image analysis, but\ntheir opaque decision-making process poses challenges in high-risk medical\nscenarios. Here we introduce HIPPO, an explainable AI method that interrogates\nattention-based multiple instance learning (ABMIL) models in computational\npathology by generating counterfactual examples through tissue patch\nmodifications in whole slide images. Applying HIPPO to ABMIL models trained to\ndetect breast cancer metastasis reveals that they may overlook small tumors and\ncan be misled by non-tumor tissue, while attention maps$\\unicode{x2014}$widely\nused for interpretation$\\unicode{x2014}$often highlight regions that do not\ndirectly influence predictions. By interpreting ABMIL models trained on a\nprognostic prediction task, HIPPO identified tissue areas with stronger\nprognostic effects than high-attention regions, which sometimes showed\ncounterintuitive influences on risk scores. These findings demonstrate HIPPO's\ncapacity for comprehensive model evaluation, bias detection, and quantitative\nhypothesis testing. HIPPO greatly expands the capabilities of explainable AI\ntools to assess the trustworthy and reliable development, deployment, and\nregulation of weakly-supervised models in computational pathology.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning models have shown promise in histopathology image analysis, but their opaque decision-making process poses challenges in high-risk medical scenarios. Here we introduce HIPPO, an explainable AI method that interrogates attention-based multiple instance learning (ABMIL) models in computational pathology by generating counterfactual examples through tissue patch modifications in whole slide images. Applying HIPPO to ABMIL models trained to detect breast cancer metastasis reveals that they may overlook small tumors and can be misled by non-tumor tissue, while attention maps$\unicode{x2014}$widely used for interpretation$\unicode{x2014}$often highlight regions that do not directly influence predictions. By interpreting ABMIL models trained on a prognostic prediction task, HIPPO identified tissue areas with stronger prognostic effects than high-attention regions, which sometimes showed counterintuitive influences on risk scores. These findings demonstrate HIPPO's capacity for comprehensive model evaluation, bias detection, and quantitative hypothesis testing. HIPPO greatly expands the capabilities of explainable AI tools to assess the trustworthy and reliable development, deployment, and regulation of weakly-supervised models in computational pathology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于计算病理学的可解释人工智能可识别模型局限性和组织生物标志物
深度学习模型在组织病理学图像分析中大有可为,但其不透明的决策过程给高风险医疗场景带来了挑战。在这里,我们介绍一种可解释的人工智能方法--HIPPO,该方法通过在整张切片图像中对组织斑块进行修改,生成反事实示例,从而对计算病理学中基于注意力的多实例学习(ABMIL)模型进行检验。将 HIPPO 应用于训练用于检测乳腺癌转移的 ABMIL 模型,发现这些模型可能会忽略小肿瘤,并可能被非肿瘤组织误导,而广泛用于解释的注意力图谱(unicode{x2014})往往会突出那些不会直接影响预测的区域。通过解释在诊断预测任务中训练的ABMIL模型,HIPPO识别出了比高注意力区域具有更强诊断效果的组织区域,而高注意力区域有时会对风险评分产生反直觉的影响。这些发现证明了 HIPPO 在综合模型评估、偏差检测和定量假设检验方面的能力。HIPPO 极大地扩展了可解释人工智能工具的功能,以评估计算病理学中弱监督模型的开发、部署和监管是否值得信赖和可靠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1